আপেক্ষিক বেগ

testwiki থেকে
imported>Ahmed Reza Khan কর্তৃক ০৬:৫২, ১১ নভেম্বর ২০২৪ তারিখে সংশোধিত সংস্করণ (অনুসরন → অনুসরণ (By FindAndReplace))
(পরিবর্তন) ← পূর্বের সংস্করণ | সর্বশেষ সংস্করণ (পরিবর্তন) | পরবর্তী সংস্করণ → (পরিবর্তন)
পরিভ্রমণে চলুন অনুসন্ধানে চলুন

টেমপ্লেট:চিরায়ত বলবিদ্যা আপেক্ষিক বেগ বা আপেক্ষিক গতি বলতে পরস্পরের সাপেক্ষে দুটি বস্তুর বেগ বা অবস্থানের পরিবর্তনকে নির্দেশ করে।

মহাবিশ্বের কোনো বস্তুই স্থির নয়। অর্থাৎ, পরম স্থিতি বিদ্যমান নয়। কোনো বস্তুকে আমরা যখন স্থির বলে বিবেচনা করি, তখন আসলে আমরা ঐ বস্তুর গতি বা অবস্থানকে অন্য একটি বস্তুর গতি বা অবস্থানের সাথে তুলনা করি৷ এই তুলনাকেই সহজ ভাবে আপেক্ষিক গতি হিসেবে বিবেচনা করা যায়।

উদাহরণ হিসেবে বলা যায়, রাস্তার পার্শ্বে দাঁড়ানো এক ব্যক্তির সাপেক্ষে একটি চলমান গাড়ি গতিশীল, ব্যক্তিটিই স্থির। কিন্তু, ঐ গাড়ির যাত্রীদের কাছে মনে হবে যেন, তারা স্থির এবং পথচারী ব্যক্তিটি গতিশীল। তাদের পরস্পরের সাপেক্ষে বেগের এই ভিন্নতাই আপেক্ষিক গতি।

গাণিতিকভাবে বলা যায়, If X object has A velocity and another object Y has B velocity, then the relative motion in perspective of Y object will be, (Velocity of X - Velocity of Y). The reverse, Relative velocity in perspective of X object will be ( Velocity of Y - Velocity of X)

(বাংলায় অর্থ : যদি X বস্তুর A বেগ থাকে এবং আরেকটি বস্তু Y এর B বেগ থাকে, তাহলে Y বস্তুর দৃষ্টিকোণে আপেক্ষিক গতি হবে, (X এর বেগ - Y এর বেগ)। বিপরীত, X বস্তুর পরিপ্রেক্ষিতে আপেক্ষিক বেগ হবে ( Y-এর বেগ - X-এর বেগ)

ধ্রুপদী বলবিজ্ঞান

একমাত্রিক ক্ষেত্রে (অনপেক্ষিক)

ধ্রুপদী বলবিজ্ঞান যা অনপেক্ষিক ও নিউটনের মতবাদের উপর নির্ভরশীল সেখানে সমস্ত গতিশীল পদার্থে‌র গতিবেগ আলোর গতিবেগ -এর (৩×১০ মি/সে) থেকে অনেক কম। এই সীমা গ্যালিলিয়ান রূপান্তরের সাথে জড়িত। নিম্নে একটি চিত্রের মাধ্যমে একটি ট্রেন এবং একজন মানুষের আপেক্ষিক গতিবেগ দেখানো হয়েছে।

গতিশীল ট্রেনের শীর্ষে চলমান ব্যক্তির আপেক্ষিক বেগ।

চিত্রে দেখা যাচ্ছে যে একটি ট্রেনের পিছনের প্রান্তে একজন ব্যক্তি ট্রেনের শীর্ষে দাড়িয়ে আছে। ঠিক দুপুর একটার সময় সেই ব্যক্তি ঘণ্টায় ১০ কিমি গতিবেগে ট্রেনের ছাদের উপর দিয়ে হাঁটা শুরু করল। ট্রেনটি ঘণ্টায় ৪০ কিমি বেগে সামনে অগ্রসর হচ্ছে। চিত্রটিতে সেই ব্যক্তি এবং ট্রেনের অবস্থান দুটি ভিন্ন সময়ে দেখানো হয়েছে; প্রথমবার যখন ট্রেনটি যাত্রা শুরু করেছে এবং দ্বিতীয়বার দুপুর ২ টোর সময়। চিত্র অনুযায়ী দুপুর ২ টোয় ট্রেনের উপরে চলমান ব্যক্তি তার প্রাথমিক অবস্থান থেকে ৫০ কি.মি. দুরত্বে অবস্থান করছে। কিন্তু ব্যক্তির নিজস্ব গতিবেগ ঘণ্টায় ১০ কিমি এবং সেই অনুযায়ী দুপুর একটার সময় যাত্রা শুরু করলে দুপুর ২ টোর সময় প্রাথমিক অবস্থান থেকে ১০ কিমি দুরত্বে থাকা উচিত ছিল কিন্তু এখানে দেখা যাচ্ছে যে চলন্ত ট্রেনের গতিবেগ (ঘন্টায় ৪০ কিমি) ব্যক্তির নিজস্ব গতিবেগের সাথে যুক্ত হয়েছে। যার ফলে ব্যক্তির গতিবেগ আপেক্ষিক ভাবে ঘন্টায় ১০ কি মি এর পরিবর্তে ঘণ্টায় ৫০ কি মি হয়েছে। অর্থাৎ ট্রেনের আপেক্ষিক গতিবেগ ঘন্টায় ৫০ কি মি।

চিত্রটিতে স্কেল এবং ঘড়ির মাধ্যমে সময়ের সঙ্গে সঙ্গে ব্যক্তির ও ট্রেনের অবস্থান পরিবর্তন বোঝানো হয়েছে। ব্যক্তির আপেক্ষিক গতিবেগ নিম্নলিখিত সূত্রের মাধ্যমে বোঝান হয়,

vME50 km/h=vMT10 km/h+vTE40 km/h,

যেখানে,

vME হল পৃথিবীর সাপেক্ষে ব্যক্তির আপেক্ষিক গতিবেগ।

vMT হল ট্রেনের সাপেক্ষে ব্যক্তির আপেক্ষিক গতিবেগ।

vTE হল পৃথিবীর সাপেক্ষে ট্রেনের আপেক্ষিক গতিবেগ।

অর্থাৎ একমাত্রিক ক্ষেত্রে কোন বস্তু B -এর সাপেক্ষে A -এর গতিবেগ পারিপার্শ্বিক সংযুক্ত চলমান বস্তু ও অন্যান্য আরও অনেক কিছুর উপর নির্ভরশীল। আপেক্ষিকতা তত্ত্বের বিশেষ সূত্রের লঙ্ঘন দেখা যায় কারণ আপেক্ষিক গতিবেগ নির্ণয়ের এই ভ্রান্ত ধারণা প্রচলিত যে আলোর গতি পর্যবেক্ষণ করার সময় বিভিন্ন পর্যবেক্ষক বিভিন্ন গতি পরিমাপ করবে।[note ১]

দ্বিমাত্রিক ক্ষেত্রে (অনপেক্ষিক)

ধ্রুপদী বলবিজ্ঞানে দুটি চলমান বস্তু A এবং B-এর মধ্যে আপেক্ষিক বেগ।

উপরের চিত্রে দুটি বস্তু A এবং B যা দুটি স্থির গতিতে চলমান। তাদের আপেক্ষিক গতিবেগের সমীকরণ দেখানো হয়েছে,

rA=rAi+vAt,
rB=rBi+vBt,

এখানে সাবস্ক্রিপ্ট i -এর মাধ্যমে বস্তুদুটির প্রাথমিক স্থানচ্যুতিকরন (t সময়ে যা শূন্যের সমান) বোঝান হয়েছে। দুটি বস্তুর স্থানচ্যুতি ভেক্টরের মধ্যে পার্থক্য rBrA যা A বস্তুর অবস্থানের সাপেক্ষে B বস্তুর অবস্থান চিহ্নিত করে।

rBrA=rBirAiinitial separation+(vBvA)trelative velocity.

সুতরাং:

vBA=vBvA.

দুটি গতিবেগ নির্দেশকারী ভেক্টর vA|C=vA এবং vB|C=vB -এর মধ্যে বিয়োগের পর আমরা পাই:

vBA=vBCvAC   vBC=vBA+vAC.

গ্যালিলিয়ান রূপান্তর(অনপেক্ষিক)

গ্যালিলিয়ান রূপান্তরের জন্য সমন্বয় সিস্টেমের স্ট্যান্ডার্ড কনফিগারেশন

বিশেষ আপেক্ষিকতার তত্ত্বের সাথে আপেক্ষিক গতির সামঞ্জস্য রাখার জন্য আমাদের একটি বিশেষ ধারনার প্রচলন করতে হয়। আপেক্ষিক গতির অনপেক্ষিক নিউটিনীয় ধারনার সাথে একমাত্রিক ক্ষেত্রে গ্যালিলিয় রুপান্তর-এর ধারনাও প্রচলিত হয়েছেঃ[note ২]

x=xvt
t=t

এখানে x' -এর মাধ্যমে একটি প্রসঙ্গ কাঠামো, যা (x) দ্বারা চিহ্নিত একটি অপর "অনিয়ন্ত্রিত(আনপ্রাইমড্‌)" প্রসঙ্গ কাঠামো-তে v বেগে চলমান, তার সাপেক্ষে অবস্থান চিহ্নিত করা হয়।[note ৩] উপরের দুটি সমীকরণের অন্তরজ নির্ণয় করে আমরা পাই প্রথম সমীকরণ, dx=dxvdt এবং ২য় সমীকরণ, [note ৪] dt=dt,

এবার অন্তরকলজের পর প্রথম সমীকরণ থেকে ২য় সমীকরণের বিভাজন করলে,

dxdt=dxdtv

আপেক্ষিক গতিবেগের সমীকরণকে প্রতিষ্ঠা করতে আমরা ধরে নিচ্ছি যে A বস্তুকনা একটি অনিয়ন্ত্রিত কাঠামোর উপর dx/dt চিহ্নিত পথ অনুসরণ করে (dx′/dt′ নিয়ন্ত্রিত কাঠামোতে চলমান)। এইরূপে, dx/dt=vAOdx/dt=vAO যেখানে O এবং O -এর মাধ্যমে যথাক্রমে একটি অনিয়ন্ত্রিত ও নিয়ন্ত্রিত কাঠামোতে অবস্থানকারী কোন পরিদর্শ‌কের সাপেক্ষে A বস্তুকনার অবস্থানকে চিহ্নিত করা হয়। এইরূপে আমরা পাই, v=vOO, এবং

vAO=vAOvOOvAO=vAO+vOO,

যেখানে পরবর্তী রূপটি সহজ প্রতিসাম্য রয়েছে।

বিশেষ আপেক্ষিকতা

ধ্রুপদী বলবিজ্ঞানে, বিশেষ আপেক্ষিকতায় আপেক্ষিক গতিবেগ vB|A হল পরিদর্শ‌ক A -এর সাপেক্ষে B -এর গতিবেগ। তবে বিশেষ আপেক্ষিকতার ক্ষেত্রে আপেক্ষিক বেগ vB|A=vA|B -এই সমীকরণের মাধ্যমে প্রকাশ করা যায়না।

এই সমতার অভাব বিজ্ঞানী থমাস -এর একটি প্রস্তাবনা থমাস প্রীসিসন্‌ এবং দুই সফল লরেঞ্জ রুপান্তর যা স্থানাঙ্ককে আবর্তিত করে। এই আবর্তনে গতিবেগ প্রদর্শনকারী ভেক্টরের মানের কোন পরিবর্তন হয়না এবং এর ফলে আপেক্ষিক গতির প্রতিসাম্যতা বজায় থাকে।

vB|A=vA|B=vB|A=vA|B

সমান্তরাল গতিবেগ

দুটি বস্তুকনা পরস্পর একে অপরের সমান্তরালে চলমান হলে তাদের আপেক্ষিক গতিবেগের সুত্র,

vB|A=vBvA1vAvBc2

আপেক্ষিক গতির সুত্রটি নিম্নরূপ,

vB|A=|vBvA|1vAvBc2

উলম্ব গতিবেগ

দুটি বস্তুকনা পরস্পর একে অপরের থেকে ৯০ ডিগ্রি কোনে চলমান হলে তাদের আপেক্ষিক বেগ vB|A -এর সুত্রটি হল,

vB|A=vBγAvA

যেখানে,

γA=11(vAc)2

আপেক্ষিক গতির সুত্রটি হল,

vB|A=c4(c2vA2)(c2vB2)c

সাধারণ ক্ষেত্রে

কোন এক বিশেষ স্থানে উপস্থিত বস্তু A -এর সাপেক্ষে সেই একই স্থানে অবস্থিত বস্তু B -এর আপেক্ষিক গতিবেগ vB|A -এর সুত্রটি হল,[]

vB|A=1γA(1vAvBc2)[vBvA+vA(γA1)(vAvBvA21)]

যেখানে,

γA=11(vAc)2

এক্ষেত্রে, আপেক্ষিক গতির সুত্রটি হল,

vB|A=1(c2vA2)(c2vB2)(c2vAvB)2c


টীকা

টেমপ্লেট:সূত্র তালিকা

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা


উদ্ধৃতি ত্রুটি: "note" নামক গ্রুপের জন্য <ref> ট্যাগ রয়েছে, কিন্তু এর জন্য কোন সঙ্গতিপূর্ণ <references group="note"/> ট্যাগ পাওয়া যায়নি

  1. Fock 1964 The theory of Space Time and Gravitation, retrieved from https://archive.org/details/TheTheoryOfSpaceTimeGravitation