গাউসের সূত্র

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন

টেমপ্লেট:Dablink গাউসের সূত্র অনুযায়ী কোনো আবদ্ধ ক্ষেত্রের ভেতর দিয়ে অতিক্রান্ত তড়িৎ বলরেখার সংখ্যা ক্ষেত্র দ্বারা আবদ্ধ তড়িৎ আধানের সমানুপাতিক। তড়িচ্চুম্বক সম্পর্কিত এই সূত্রটি পদার্থবিজ্ঞানী কার্ল ফ্রিড‌রিশ গাউস ১৮৩৫ খ্রিষ্টাব্দে আবিষ্কার করেন এবং ১৮৬৭ খ্রিষ্টাব্দে প্রচার করেন। এটি ম্যাক্সওয়েলের সমীকরণ (Maxwell’s equations) চারটির অন্যতম, যেটি তড়িৎ গতিবিদ্যার মূল ভিত্তি। অন্য তিনটি হচ্ছে গাউসের চুম্বকত্বের সূত্র (Gauss’ law for magnetism), ফ্যারাডের আবেশ সূত্র (Faraday’s law of induction) এবং ম্যাক্সওয়েলের সংশোধনযুক্ত অ্যাম্পেয়ারের সূত্র (Ampere’s law with Maxwell’s correction)। উল্লেখ্য, গাউসের সূত্র এবং কুলম্বের সূত্র একটি থেকে অন্যটি প্রতিষ্ঠা করা যায়।

গাউস স্ফিয়ার চার্জ।

গাউসের সূত্রটিকে সমাকলিত রূপে লেখা যায়

S𝐄d𝐀=QAεo

এই সমীকরণটির বাম পাশ একটি ক্ষেত্র সমাকলন যা একটি বদ্ধ ক্ষেত্র S নির্দেশ করে এবং ডান পাশটি ক্ষেত্র S দ্বারা আবদ্ধ মোট আধানকে মাধ্যমের পরাবৈদ্যুতিক ধ্রুবক দ্বারা ভাগ করার একটি রাশিকে প্রকাশ করে।

গাউসের সূত্রের অন্তরকলিত রূপটি হচ্ছে:

E=ρεo

যেখানে E তড়িৎক্ষেত্রের অভিসারীতা(Divergence) আর ρ হচ্ছে আধান ঘনত্ব(Charge density)। গণিতসংক্রান্ত গাউসের উপপাদ্যটি - যেটিকে অভিসারী উপপাদ্য(Divergence theorem) বলা হয়ে থাকে - এই অন্তরকলিত এবং সমাকলিত রূপদুটিকে একত্রিত করে। এই প্রত্যেকটি রূপকে আবার দুইভাবে প্রকাশ করা যায়; তড়িৎক্ষেত্র E এবং মোট আধানের মধ্যে সম্পর্ক দ্বারা অথবা তড়িৎসরণ ক্ষেত্র(electric displacement field) D এবং মুক্ত তড়িৎ আধানের দ্বারা। গাউসের সূত্রের সাথে পদার্থবিদ্যার আরো অনেক সূত্রের গাণিতিক মিল আছে, যেমন গাউসের চুম্বকত্বের সূত্র (Gauss’s Law for magnetism) এবং গাউসের মহাকর্ষের সূত্র (Gauss’s Law for Gravity). আসলে যেকোনো বিপরীত বর্গীয় সূত্র কে (Inverse square law) গাউসের সূত্রের মাধ্যমে প্রকাশ করা যায়। উদাহরণ হিসেবে বলা যায় গাউসের সূত্রটি কুলম্বের সূত্র এর সমতুল্য এবং গাউসের মহাকর্ষ সূত্রটি নিউটনের মহাকর্ষ সূত্র(Newton’s Law of Gravity)এর সমতুল্য। গাউসের সূত্রের মাধ্যমে দেখানো যায় যে, Farady cage এর ভিতরে সকল বৈদ্যুতিক ক্ষেত্রের জন্য তড়িৎ আধান থাকবে। মোটকথায়, গাউসের সূত্রটি অ্যাম্পেয়ারের সূত্রটির সমতুল্য, যেখানে অ্যাম্পেয়ারের সূত্র চুম্বকক্ষেত্রের জন্য প্রযোজ্য।

তড়িৎক্ষেত্র E সংক্রান্ত সূত্র

গাউসের সূত্রকে দুভাবে তড়িৎ ক্ষেত্র E এবং মোট আধানের মধ্যে সম্পর্ক দ্বারা তড়িৎসরণ ক্ষেত্র(electric displacement field) D এবং মুক্ত তড়িৎ আধানের দ্বারা প্রকাশ করা হয়।

সমাকলিত রূপ

ΦE=qinε0

যেখানে ΦE কোনো ভলিউম V এর একটি বদ্ধ পৃষ্ঠতল Sমধ্য দিয়ে তড়িৎ ফ্লাক্স, q_in হল S দ্বারা অধিকৃত মোট আধান এবং ε0 শূন্য মাধ্যমের তড়িৎভেদ্যতা . বৈদ্যুতিক ফ্লাক্স ΦE একটি পৃষ্ঠতলে বৈদ্যুতিক ক্ষেত্রের সমাকলন হিসাবে সংজ্ঞায়িত করা হয়:

ΦE=S𝐃d𝐀

যেখানে E হল বৈদ্যুতিক ক্ষেত্র, A হল ক্ষেত্র ভেক্টর (area vector)

অন্তরকলিত রূপ

অভিসারী উপপাদ্য দ্বারা গাউস এর সূত্র ডিফারেনশিয়াল ফর্মে বিকল্পরূপে লেখা যাবে:

𝐄=ρε0

যেখানে ∇•E হল বৈদ্যুতিক ক্ষেত্রের অভিসারীতা এবং ρ মোট বৈদ্যুতিক আধান ঘনত্ব.

অন্তরকলিত এবং সমাকলিত রূপদুটির তুল্যতা

তড়িৎসরণ ক্ষেত্র D সংক্রান্ত সূত্র

ডাইইলেকট্রিকের জন্য এবং অন্যান্য বিভিন্ন প্রকার পরিবাহী ও অপরিবাহী সমস্ত পদার্থের জন্য এই সূত্র ব্যবহৃত হয়।

সমাকলিত রূপ

ΦD=qfree

যেখানে ΦD কোনো ভলিউম V এর একটি বদ্ধ পৃষ্ঠতল S এর মধ্য দিয়ে তড়িৎসরণ ক্ষেত্র D এর ফ্লাক্স, :qfree হল S দ্বারা অধিকৃত মোট আধান। অনূরূপে তড়িৎসরণ ক্ষেত্র D এর ফ্লাক্স ΦD একটি পৃষ্ঠতলে তড়িৎসরণ ক্ষেত্রের সমাকলন হিসাবে সংজ্ঞায়িত করা হয়:

ΦD=S𝐃d𝐀

অন্তরকলিত রূপ

অভিসারী উপপাদ্য দ্বারা গাউস এর সূত্র ডিফারেনশিয়াল ফর্মে বিকল্পরূপে লেখা যাবে:

𝐃=ρfree

যেখানে ∇•D হল বৈদ্যুতিক ক্ষেত্রের অভিসারীতা এবং ρ মুক্ত বৈদ্যুতিক আধান ঘনত্ব.

মোট এবং মুক্ত আধান বিবৃতির তুল্যতা

সমসত্ত্ব, isotropic(যে মাধ্যমে μ ও ε দিকনির্ভর নয়), nondispersive(যে মাধ্যমে তড়িৎভেদ্যতা তড়িতক্ষেত্রের কম্পাঙ্কের উপর নির্ভরশীল নয়), রৈখিক(Linear) পদার্থের মধ্যে, E এবং D মধ্যে একটি সরল সম্পর্ক আছে:

𝐃=ε𝐄

যেখানে ε উপাদানের তড়িৎভেদ্যতা। এর থেকে লেখা যায়ঃ

ΦE=Qfreeϵ

এবং

𝐄=ρfreeε

আরও দেখুন

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা ^ Halliday, David; Resnick, Robert (1970). Fundamentals of Physics. John Wiley & Sons, Inc.

বহিঃসংযোগ