চিত্র:Abu Reyhan Biruni-Earth Circumference.svg

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন
মূল ফাইল (এসভিজি ফাইল, সাধারণত ১,০০০ × ৯০০ পিক্সেল, ফাইলের আকার: ১৬ কিলোবাইট)

এই ফাইলটি উইকিমিডিয়া কমন্স থেকে আগত এবং অন্যান্য প্রকল্পে ব্যবহৃত হতে পারে। সেখানে থাকা ফাইলটির বিবরণ পাতার বিবরণ নিচে দেখানো হলো।

সারাংশ

বিবরণ
English: Biruni (973 - 1048) developed a new method using trigonometric calculations to compute earth's radius and circumference based on the angle between the horizontal line and true horizon from a mountain top with known height. He calculated the height of the mountain by going to two points at sea level with a known distance apart and then measuring the angle between the plain and the top of the mountain for both points.

Biruni's estimate of 6,339.9 km for the Earth radius had an error of 0.0026 and was 16.8 km less than the current value of 6,356.7 km. The idea came to him when he was on top of a tall mountain near Nandana in Pakistan. He measured the dip angle using an astrolabe and he applied to the law of sines formula. He also made use of algebra in his calculation.

  • A = Highest point of mountain
  • B = Lowest point of mountain
  • h = Height of the mountain
  • C = Lowest point of true horizon visible from point A
  • O = Centre of Earth
  • α = Dip angle
  • r = Earth's radius

Solution:
The angle AOC = α.
AO=(r+h) is the hypotenuse in triangle AOC.
r=(r+h)·cos(α)
Then the right side can be simplified to find r.

r=h·cos(α)/(1-cos(α))


Français : Biruni (973-1048) développa une nouvelle méthode utilisant la trigonométrie pour calculer le rayon et la ciconférence de la Terre, basée sur l'angle entre la ligne horizontale et l'horizon réel depuis le sommet d'une montagne de hauteur connue. Il calcula la hauteur de la montagne en se rendant en deux points situés au niveau de la mer dont l'écartement était connu, puis en mesurant l'angle entre la ligne horizontale formée par les deux points au niveau de la mer et le sommet de la montagne, et ceci depuis chacun des deux points.

L'estimation de Biruni de 6 339,9 km pour le rayon de la Terre comportait une erreur de 0,26 %, soit une valeur inférieure de 16,8 km par rapport à la valeur actuelle de 6 356,7 km. L'idée lui était venue alors qu'il se trouvait au sommet d'une haute montagne, près de Nandana en Inde. Il mesura l'angle d'incinaison avec un astrolabe et il appliqua la formule des sinus. Il fit également usage de l'algèbre pour ses calculs.

  • A = point culminant de la montagne
  • B = point le plus bas de la montagne
  • h = hauteur de la montagne
  • C = point le plus bas de l'horizon vrai visible du point A
  • O = Centre de la Terre
  • α = angle d'inclinaison
  • r = rayon de la Terre

Solution :
L'angle AOC = α.
AO=(r+h) est l'hypothénuse du triangle AOC.
r=(r+h)·cos(α)
Puis le côté droit se simplifie pour trouver r.

r=h·cos(α)/(1-cos(α))


তারিখ
উৎস নিজের কাজ Using Geogebra and Inkscape
লেখক Nevit Dilmen
SVG genesis
InfoField
 এই এসভিজির উৎস কোড বৈধ
 এই জ্যামিতিটি Inkscape দিয়ে তৈরি করা হয়েছে।
Geogebra
 and with GeoGebra.
  This geometry uses embedded text that can be easily translated using a text editor.

লাইসেন্স প্রদান

আমি, এই কাজের স্বত্বাধিকারী, এতদ্দ্বারা আমি এই কাজকে নিম্ন বর্ণিত লাইসেন্সের আওতায় প্রকাশ করলাম:
w:bn:ক্রিয়েটিভ কমন্স
স্বীকৃতিপ্রদান একইভাবে বণ্টন
এই ফাইলটি ক্রিয়েটিভ কমন্স অ্যাট্রিবিউশন-শেয়ার অ্যালাইক ৩.০ আনপোর্টেড লাইসেন্সের আওতায় লাইসেন্সকৃত।
আপনি স্বাধীনভাবে:
  • বণ্টন করতে পারেন – এ কাজটি অনুলিপি, বিতরণ এবং প্রেরণ করতে পারেন
  • পুনঃমিশ্রণ করতে পারেন – কাজটি অভিযোজন করতে পারেন
নিম্নের শর্তাবলীর ভিত্তিতে:
  • স্বীকৃতিপ্রদান – আপনাকে অবশ্যই যথাযথ স্বীকৃতি প্রদান করতে হবে, লাইসেন্সের একটি লিঙ্ক সরবরাহ করতে হবে এবং কোনো পরিবর্তন হয়েছে কিনা তা নির্দেশ করতে হবে। আপনি যেকোনো যুক্তিসঙ্গত পদ্ধতিতে এটি করতে পারেন। কিন্তু এমন ভাবে নয়, যাতে প্রকাশ পায় যে লাইসেন্সধারী আপনাকে বা আপনার এই ব্যবহারের জন্য অনুমোদন দিয়েছে।
  • একইভাবে বণ্টন – আপনি যদি কাজটি পুনঃমিশ্রণ, রুপান্তর, বা এর ওপর ভিত্তি করে নতুন সৃষ্টিকর্ম তৈরি করেন, তবে আপনাকে অবশ্যই আপনার অবদান একই লাইসেন্স বা একই রকমের লাইসেন্সের আওতায় বিতরণ করতে হবে।

ক্যাপশন

এই ফাইলটি কী উপস্থাপন করছে তার এক লাইন ব্যাখ্যা যোগ করুন

এই ফাইলে চিত্রিত আইটেমগুলি

যা চিত্রিত করে

১৬,৬০৭ বাইট

৯০০ পিক্সেল

১,০০০ পিক্সেল

ফাইলের ইতিহাস

যেকোনো তারিখ/সময়ে ক্লিক করে দেখুন ফাইলটি তখন কী অবস্থায় ছিল।

তারিখ/সময়সংক্ষেপচিত্রমাত্রাব্যবহারকারীমন্তব্য
বর্তমান০৬:২৫, ২ মে ২০১০০৬:২৫, ২ মে ২০১০-এর সংস্করণের সংক্ষেপচিত্র১,০০০ × ৯০০ (১৬ কিলোবাইট)wikimediacommons>NevitCrop

নিম্নলিখিত পাতাটি এই ফাইল ব্যবহার করে: