চিত্র:Erays.svg

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন
মূল ফাইল (এসভিজি ফাইল, সাধারণত ১,০০০ × ৫০০ পিক্সেল, ফাইলের আকার: ৬১২ কিলোবাইট)

এই ফাইলটি উইকিমিডিয়া কমন্স থেকে আগত এবং অন্যান্য প্রকল্পে ব্যবহৃত হতে পারে। সেখানে থাকা ফাইলটির বিবরণ পাতার বিবরণ নিচে দেখানো হলো।

সারাংশ

বিবরণ
English: Polar coordinate system and mapping from the complement (exterior) of the closed unit disk to the complement of the filled Julia set for .
বাংলা: জটিল গতিবিদ্যায় একক বৃত্ত
Français : Uniformisation du complémentaire du segment .
Bahasa Indonesia: Lingkaran satuan dalam dinamika kompleks.
日本語: リーマン写像による単位円の像としての単連結ジュリア集合
Polski: Układ współrzędnych biegunowych oraz funkcja odwzorowująca dopełnienie dysku jednostkowego na dopełnienie zbioru Julia.
তারিখ ৪ নভেম্বর ২০০৮ (মূল আপলোডের তারিখ)
উৎস এর উপর ভিত্তি করে নিজের কাজ: Adam Majewski কর্তৃক Erays.png
লেখক ভেক্টরকরণ: Alhadis
অন্যান্য সংস্করণ
Source code
InfoField
Created using Maxima.
R_max: 5;
R_min: 1;
dR: R_max - R_min;
psi(w) := w+1/w;
NmbrOfRays: 10;
iMax: 100; /* number of points to draw */
GiveCirclePoint(t) := R*%e^(%i*t*2*%pi); /* gives point of unit circle for angle t in turns */
GiveWRayPoint(R) := R*%e^(%i*tRay*2*%pi); /* gives point of external ray for radius R and angle tRay in turns */ 

/* f_0 plane = W-plane */
/* Unit circle */
R: 1;
circle_angles: makelist(i/(10*iMax), i, 0, 10*iMax-1); /* more angles = more points */
CirclePoints: map(GiveCirclePoint, circle_angles);

/* External circles */
circle_radii: makelist(R_min+i, i, 1, dR);
WCirclesPoints: [];
for R in circle_radii do 
	WCirclesPoints: append(WCirclesPoints, map(GiveCirclePoint, circle_angles));

/* External W rays */
ray_radii: makelist(R_min+dR*i/iMax, i, 0, iMax);
ray_angles: makelist(i/NmbrOfRays, i, 0, NmbrOfRays-1);
WRaysPoints: [];
for tRay in ray_angles do 
	WRaysPoints: append(WRaysPoints, map(GiveWRayPoint, ray_radii));


/* f_c plane = Z plane = dynamic plane */
/* external Z rays */
ZRaysPoints: map(psi, WRaysPoints);

/* Julia set points */
JuliaPoints: map(psi, CirclePoints);
Equipotentials: map(psi, WCirclesPoints);


/* Mario Rodríguez Riotorto (http://www.telefonica.net/web2/biomates/maxima/gpdraw/index.html) */
load(draw);
draw(
	file_name = "erays",
	pic_width = 1000, 
	pic_height = 500,
	terminal = 'svg,
	columns = 2,
	gr2d(
		title = " unit circle with external rays & circles ",
		point_type = filled_circle,
		points_joined = true,
		point_size = 0.34,
		color = red,
		points(map(realpart, CirclePoints),map(imagpart, CirclePoints)),
		points_joined = false,
		color = black,
		points(map(realpart, WRaysPoints), map(imagpart, WRaysPoints)),
		points(map(realpart, WCirclesPoints), map(imagpart, WCirclesPoints))
	),
	gr2d(
		title = "Image under psi(w):=w+1/w; ",
		points_joined = true,
		point_type = filled_circle,
		point_size = 0.34,
		color = blue,
		points(map(realpart, JuliaPoints),map(imagpart, JuliaPoints)),
		points_joined = false,
		color = black,
		points(map(realpart, ZRaysPoints),map(imagpart, ZRaysPoints)),
		points(map(realpart, Equipotentials),map(imagpart, Equipotentials))
	) 
);

SVG genesis
InfoField
 এই এসভিজির উৎস কোড বৈধ
  This vector image was created with Adobe Illustrator, and then manually edited.
This file is saved in human-editable plain text format. Any editing of the image or creation of any derivative work should be performed using a text editor. Please do not upload edits saved or exported with Inkscape or similar vector graphics editors, as well as with automated tools such as SVG Translate.
This file supersedes the file Erays.png. It is recommended to use this file rather than the other one.

Deutsch  English  español  فارسی  français  magyar  Bahasa Indonesia  italiano  日本語  한국어  македонски  മലയാളം  Nederlands  polski  prūsiskan  português do Brasil  русский  slovenščina  svenska  中文(简体)  中文(繁體)  +/−

minor quality

Long description

Here are two diagrams:

  • on the left is dynamical plane for
  • on the right is dynamical plane for

On left diagram one can see:

Right diagram is image of left diagram under function (the Riemann map) which maps the complement (exterior) of the closed unit disk to the complement of the filled Julia set

For :

It is:

  • a simplest case for analysis,
  • only one case when formula for computing is known (explicit Riemann mapping).

maps [1]:

লাইসেন্স প্রদান

w:bn:ক্রিয়েটিভ কমন্স
স্বীকৃতিপ্রদান একইভাবে বণ্টন
এই ফাইলটি ক্রিয়েটিভ কমন্স অ্যাট্রিবিউশন-শেয়ার অ্যালাইক ৩.০ আনপোর্টেড লাইসেন্সের আওতায় লাইসেন্সকৃত।
স্বীকৃতিপ্রদান:
আপনি স্বাধীনভাবে:
  • বণ্টন করতে পারেন – এ কাজটি অনুলিপি, বিতরণ এবং প্রেরণ করতে পারেন
  • পুনঃমিশ্রণ করতে পারেন – কাজটি অভিযোজন করতে পারেন
নিম্নের শর্তাবলীর ভিত্তিতে:
  • স্বীকৃতিপ্রদান – আপনাকে অবশ্যই যথাযথ স্বীকৃতি প্রদান করতে হবে, লাইসেন্সের একটি লিঙ্ক সরবরাহ করতে হবে এবং কোনো পরিবর্তন হয়েছে কিনা তা নির্দেশ করতে হবে। আপনি যেকোনো যুক্তিসঙ্গত পদ্ধতিতে এটি করতে পারেন। কিন্তু এমন ভাবে নয়, যাতে প্রকাশ পায় যে লাইসেন্সধারী আপনাকে বা আপনার এই ব্যবহারের জন্য অনুমোদন দিয়েছে।
  • একইভাবে বণ্টন – আপনি যদি কাজটি পুনঃমিশ্রণ, রুপান্তর, বা এর ওপর ভিত্তি করে নতুন সৃষ্টিকর্ম তৈরি করেন, তবে আপনাকে অবশ্যই আপনার অবদান একই লাইসেন্স বা একই রকমের লাইসেন্সের আওতায় বিতরণ করতে হবে।
  1. Peitgen, Heinz-Otto; Richter Peter (১৯৮৬) The Beauty of Fractals, হাইডেলবার্গ: Springer-Verlag ISBN: 0-387-15851-0.

ক্যাপশন

এই ফাইলটি কী উপস্থাপন করছে তার এক লাইন ব্যাখ্যা যোগ করুন

এই ফাইলে চিত্রিত আইটেমগুলি

যা চিত্রিত করে

ফাইলের ইতিহাস

যেকোনো তারিখ/সময়ে ক্লিক করে দেখুন ফাইলটি তখন কী অবস্থায় ছিল।

তারিখ/সময়সংক্ষেপচিত্রমাত্রাব্যবহারকারীমন্তব্য
বর্তমান২১:৩৫, ১৬ ফেব্রুয়ারি ২০২৩২১:৩৫, ১৬ ফেব্রুয়ারি ২০২৩-এর সংস্করণের সংক্ষেপচিত্র১,০০০ × ৫০০ (৬১২ কিলোবাইট)wikimediacommons>AlhadisRecreated SVG using librsvg-compatible markup.

নিম্নলিখিত পাতাটি এই ফাইল ব্যবহার করে: