টেলর ধারা


গণিতে টেইলর ধারা হলো কোনো ফাংশনের অসীমত্বক সমষ্টির প্রকাশ, যা একটি নির্দিষ্ট বিন্দুতে এর বিভিন্ন মাত্রার অন্তরকসমূহের মান থেকে নির্ণয় করা হয়। এ ধারাটির নামকরণ করা হয়েছে ইংরেজ গণিতবিদ ব্রুক টেইলরের নামানুসারে। ধারাটি যদি শূন্য কেন্দ্র করে নির্ণীত হয়, তখন একে ম্যাকলরিনের ধারা বলা হয়। সাধারণত হিসাব করার সময় টেইলর সিরিজের সসীম পদের সমষ্টি নেয়া হয়। টেইলর ধারাকে টেইলর বহুপদীর সীমা বিবেচনা করা যেতে পারে।
সংজ্ঞা
কোনো বাস্তব বা জটিল ফাংশন ƒ(x) যা কীনা একটি বাস্তব বা জটিল সংখ্যা a এর সংলগ্ন মানে অসীমভাবে অন্তরকলনযোগ্য, তার টেইলর ধারা হলো ঘাতের ধারা
এর চেয়ে সংবদ্ধ আকারে একে প্রকাশ করা যায় এভাবে
যেখানে n! নির্দেশ করে n এর ফ্যাক্টরিয়াল এবং ƒ (n)(a) নির্দেশ করে ƒ -এর nতম অন্তরক, a বিন্দুতে পরিমাপকৃত। ƒ এর শূন্যতম অন্তরক হল ƒ নিজেই এবং টেমপ্লেট:Nowrap ও 0! উভয়েরই সজ্ঞায়িত মান 1.
বিশেষ ক্ষেত্রে যখন টেমপ্লেট:Nowrap, এ ধারাটিকে ম্যাকলরিনের ধারা বলা হয়, যা পূর্বে একবার বলা হয়েছে।
টীকা
তথ্যসূত্র
বহিঃসংযোগ
- টেমপ্লেট:MathWorld
- Madhava of Sangamagramma
- Taylor Series Representation Module by John H. Mathews
- "Discussion of the Parker-Sochacki Method টেমপ্লেট:ওয়েব আর্কাইভ"
- Another Taylor visualisation - where you can choose the point of the approximation and the number of derivatives
- Taylor series revisited for numerical methods at Numerical Methods for the STEM Undergraduate