পরাবৃত্ত

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন
পরাবৃত্তের একাংশ (নীল) এবং এর বিভিন্ন অংশ। একটি পূর্নাঙ্গ পরাবৃত্তের কোন শেষবিন্দু নেই এটি অসীম পর্যন্ত বিস্তৃতএর সমীকরণ, x2=4ay

পরাবৃত্তটেমপ্লেট:Efn বা প্যারাবোলা (টেমপ্লেট:Lang-el) একধরনের কণিক যেখানে উৎকেন্দ্রিকতা (e)-এর মান ১।

আকৃতি

পরাবৃত্ত একটি দ্বিমাত্রিক দ্বিপ্রতিসাম্য বক্ররেখা যা ইংরেজির ইউ (U) আকৃতির। পরাবৃত্ত হলোউপকেন্দ্র এবং দিকাক্ষ (নিয়ামক) হতে সমদূরবর্তী বিন্দুসমূহের সঞ্চারপথ

বিভিন্ন অংশ

পরাবৃত্তের একটি নির্দিষ্ট বিন্দু এবং একটি নির্দিষ্ট সরলরেখা হতে সমদূরবর্তী বিন্দু সমুহের সঞ্চারপথ। নির্দিষ্ট বিন্দুকে উপকেন্দ্র এবং নির্দিষ্ট রেখাটিকে দিকাক্ষরেখা বা নিয়ামকরেখা বলা হয়। উপকেন্দ্র দিকাক্ষ রেখার উপর অবস্থিত নয় এমন যেকোন বিন্দুদিকাক্ষরেখার উপর লম্ব এবং উপকেন্দ্রগামী রেখাকে অক্ষরেখা বলা হয়। পরাবৃত্তকে অক্ষরেখা সমান দুই ভাগে ভাগ করে। পরাবৃত্ত ও অক্ষরেখার ছেদবিন্দুকে শীর্ষ বিন্দু নামে আখ্যায়িত করা হয়। উপকেন্দ্রিক লম্ব পরাবৃত্তের একটি জ্যা যা উপকেন্দ্র দিয়ে গমনকরে।

ইতিহাস

লিওনার্দো দ্যা ভিঞ্চির আকানো পরাবৃত্তিক কম্পাস

জানা যায় খ্রিষ্টপূর্ব চতুর্থ শতাব্দীতে মেনাইকুমস (Menaechmus) প্রথম কনিক নিয়ে কাজ করেন। তিনি পরাবৃত্তের মাধ্যমে কনিকের সমস্যার সমাধান করার উপায় বের করেন(যদিও তার পদ্ধতি পরবর্তিতে লক্ষপুরন করতে পারেনি)। খৃষ্টপূর্ব তৃতীয় শতাব্দীতে আর্কিমিডিস পরাবৃত্ত ও একটি রেখা দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল তার পরিচালনা পদ্ধতির মাধ্যমে নির্নয় করতে সফল হন। পরাবৃত্ত নামকরণ করেন বিখ্যাত জ্যামিতিক অ্যাপলনিয়াস। অ্যপলনিয়াস পরাবৃত্তের অনেক বৈশিষ্ট আবিষ্কার করেছিলেন। তিনি প্রমাণ করেছিলেন ক্ষেত্রফলের ধারনার সাথে এই বক্ররেখার একটি যোগসূত্র রয়েছে।[] আলেকজেন্দ্রিয়ার বিখ্যাত জ্যামিতিজ্ঞ পাপ্পস উপকেন্দ্র, দিকাক্ষ সহ কনিকের অন্যান্য অংশের নামকরণ করেন।

গ্যালিলিও দেখিয়েছিলেন অভিকর্ষের প্রভাবে ভূপৃষ্টে অনূভুমিক ভাবে নিক্ষিপ্ত একটি বস্তুর সঞ্চারপথ একটি পরাবৃত্ত এবং এর সমীকরন y=ax+bx2

কার্তেসীয় স্থানাঙ্ক ব্যবস্থায় পরাবৃত্তের সমীকরণ

Conic Sections

দিকাক্ষের সমীকরণ x=-a, উপকেন্দ্রের স্থানাঙ্ক (a, 0) এবং (xy) পরাবৃত্তের উপরস্থ একটি বিন্দু। পরাবৃত্তের সঙ্গানুসারে উপকেন্দ্র থেকে পরাবৃত্তের উপর যে কোন বিন্দুর দুরত্ব এবং দিকাক্ষ থেকে একই বিন্দুর লম্ব দুরত্ব সমান। অতএব-

|x+a|=(xa)2+y2

সমীকরনের উভয় পক্ষকে বর্গ করলে

y2=4ax 

উপরের সমীকরনে xy কে পরস্পরের দ্বারা প্রতিস্থাপিত করলে নতুন আরেকটি পরাবৃত্তের সমীকরন পাওয়া যায় যা y অক্ষের সাপেক্ষে প্রতিসাম্য।

x2=4ay 

উপর্যুক্ত পরাবৃত্তের শীর্ষ মূল বিন্দু(0,0) তে অবস্থিত। শীর্ষ বিন্দুকে (hk) বিন্দুতে স্থানান্তরিত করলে পরাবৃত্তের সমীকরন পাওয়া যায়-

(xh)2=4a(yk)

সরলিকৃত সমীকরন এর প্রমাণ আকার হিসাবে লেখা যায-

y=ax2+bx+c

যা গ্যালিলিও এর নিক্ষিপ্ত বস্তুর গতিপথের সমীকরনের সাথে মিলে যায়।

আরও দেখুন

টীকা

টেমপ্লেট:টীকা তালিকা

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা টেমপ্লেট:প্রবেশদ্বার