স্থায়িত্ব উপত্যকা
টেমপ্লেট:পারমাণবিক পদার্থবিদ্যা
স্থায়িত্ব উপত্যকা বা valley of stability (অথবা পারমাণবিক উপত্যকা, শক্তি উপত্যকা, বা বিটা স্থায়িত্ব উপত্যকা) হল তেজস্ক্রিয়তার সাপেক্ষে বন্ধন শক্তির ভিত্তিতে নিউক্লাইডের স্থায়িত্বের বৈশিষ্ট্য।[১] উপত্যকাটির গড়পড়তা আকৃতি দীর্ঘায়িত উপবৃত্তাকার, যা নিউট্রন ও প্রোটন সংখ্যার ফাংশন হিসেবে বন্ধন শক্তির একটি চিত্র গঠন করে।[১] উপত্যকার গভীরতর এলাকায় স্থিতিশীল নিউক্লাইডের অবস্থান।[২] উপত্যকার মধ্যভাগ বরাবর অবস্থিত স্থিতিশীল নিউক্লাইডের সারিকে বিটা স্থায়িত্ব রেখা বলা হয়। উপত্যকার দুই প্রান্তের দিকে বিটা ক্ষয় (β− or β+) জনিত ক্রমাগত উচ্চতর অস্থিতিশীলতা পাওয়া যায়। স্থায়িত্ব উপত্যকায় কোন নিউক্লাইড বিটা স্থায়িত্ব রেখা থেকে যত দূরে অবস্থিত, তার অস্থায়িত্বের সম্ভাবনা তত বেশি। উপত্যকার সীমানা অঞ্চল পারমাণবিক ক্ষরণ রেখার সাথে সম্পর্কিত, যেখানে নিউক্লাইডগুলো এতটা অস্থায়ী যে একক প্রোটন এবং একক নিউট্রন বিকিরণ করতে থাকে। উপত্যকার অভ্যন্তরে উচ্চ পারমাণবিক সংখ্যা এলাকায় আলফা ক্ষয় বা স্বত:স্ফূর্ত ফিশন জনিত অস্থায়িত্ব দেখা যায়।
স্থায়িত্ব উপত্যকা নিউক্লাইড সারণীর সকল সদস্যকে ধারণ করে। এই তালিকাটি পদার্থবিজ্ঞানি এমিলিও সেগরের নামানুসারে সেগরে তালিকা নামে পরিচিত।[৩] সেগরে তালিকাটিকে স্থায়িত্ব উপত্যকার মানচিত্র হিসেবে গণ্য করা যায়। স্থায়িত্ব উপত্যকার বহি:স্থ অঞ্চলটি অস্থায়িত্বের সমুদ্র নামে পরিচিত।[৪][৫]
বিজ্ঞানীরা বহুদিন ধরে স্থায়িত্ব উপত্যকার বাইরে অবস্থিত দীর্ঘস্থায়ী ভারী আইসোটোপের অনুসন্ধান করেছেন,[৬][৭][৮] যাদের উপস্থিতি প্রস্তাব করেছিলেন গ্লেন থিওডোর সিবোর্গ, ১৯৬০ দশকের শেষাংশে।[৯][১০] এই আপাত স্থায়ী নিউক্লাইডসমূহের কণা গঠনে "ম্যাজিক" পারমাণবিক এবং নিউট্রন সংখ্যার উপস্থিতি অনুমিত, এবং এরা স্থায়িত্ব উপত্যকার বাইরে একটি তথাকথিত স্থায়িত্ব দ্বীপ (island of stability) গঠন করে।
বর্ণনা
সকল পরমাণুর নিউক্লিয়াস গঠিত হয় পারমাণবিক বল দ্বারা আবদ্ধ নিউট্রন এবং প্রোটনের সমন্বয়ে। পৃথিবীতে প্রাকৃতিকবাবে ২৮৬ রকমের নিউক্লিয়াস পাওয়া যায়, যাদের প্রত্যেকের ভিন্ন ভিন্ন প্রোটন সংখ্যা বা পারমাণবিক সংখ্যা Z, অনন্য নিউট্রন সংখ্যা N, এবং ভর সংখ্যা A = Z + N। তবে সকল নিউক্লাইড স্থিতিশীল নয়। বায়ার্নের মতে,[৩] কোন নিউক্লাইডকে স্থায়িত্বপূর্ণ বলে সংজ্ঞায়িত করার জন্য তার অর্ধায়ু ১০১৮ বছরের বেশি হতে হবে। তবে প্রোটন-নিউট্রনের প্রচুর সংখ্যক সন্নিবেশ অস্থায়ী। একটি সাধারণ উদাহরণ হল কার্বন-১৪ যা বিটা ক্ষয় দ্বারা নাইট্রোজেন-১৪ তে পরিণত হয় (অর্ধায়ু ~৫,৭৩০ বছর)
এধরনের ক্ষয়ের মাধ্যমে একটি পদার্থের পরমাণু অন্য পদার্থের পরমাণুতে রুপান্তরিত হয় এবং একটি বিটা কণা ও একটি ইলেক্ট্রন অ্যান্টিনিউট্রিনো বিকিরিত হয়। সকল নিউক্লাইড ক্ষয়ের সাধারণ বৈশিষ্ট্য হচ্ছে, ক্ষয় থেকে উৎপন্ন কণাগুলোর মোট ভর, মূল নিউক্লাইডের ভরের চেয়ে কম হয়। প্রাথমিক এবং সর্বশেষ বন্ধন শক্তির পার্থক্যটুকু ক্ষয়লদ্ধ কণাসমূহের গতিশক্তি দ্বারা ব্যায়িত হয়।[৩]
স্থায়িত্ব উপত্যকা ধারণাটির একটি ফল হচ্ছে নিউট্রন ও প্রোটন সংখ্যার ফাংশন হিসেবে বন্ধন শক্তি অনুসারে সকল নিউক্লাইডকে সজ্জিত করার সুবিধা।[১] অধিকাংশ স্থিতিশীল নিউক্লাইডের প্রোটন ও নিউট্রন সংখ্যা অনেকটাই একে-অপরের কাছাকাছি, ফলে Z = N নির্দেশক রেখাটি স্থায়ী নিউক্লাইডসমূহকপর চিহ্নিত করার একটি প্রাথমিক উপায়। তবে প্রোটনের সংখ্যা বৃদ্ধি পেলে নিউক্লাইডকে স্থায়িত্ব দানের জন্য দরকারী নিউট্রনের সংখ্যাও বৃদ্ধি পায়, তাই বৃহৎ Z সংখ্যা সম্পন্ন নিউক্লাইডের স্থায়িত্বের জন্য আরও বৃহত্তর নিউট্রন সংখ্যা, N > Z, প্রয়োজন হয়। স্থায়িত্ব উপত্যকা গঠিত হয় বন্ধন শক্তির ঋণাত্বক মান দ্বারা, যেখানে বন্ধন শক্তি হল নিউক্লাইডকে এর উপাদান কণায় বিভক্ত করতে প্রয়োজনীয় শক্তি। স্থিতিশীল নিউক্লাইডের বন্ধন শক্তি উচ্চ, এবং এরা স্থায়িত্ব উপত্যকার গভীরতর এলাকায় অবস্থিত। অন্যদিকে দুর্বল বন্ধন শক্তিসম্পন্ন নিউক্লাইডে N এবং Z এর সন্নিবেশ স্থায়িত্ব রেখার বাইরে এবং স্থায়িত্ব উপত্যকার উপরিভাগে অবস্থিত। অস্থিতিশীল নিউক্লাইড গঠিত হতে পারে পারমাণবিক রিঅ্যাক্টর বা সুপারনোভা প্রভৃতি উৎস হতে। এধরনের নিউক্লাইড সাধারণত ক্ষয় শৃঙ্খল নামক কতগুলো ক্রমানুসারী পারমাণবিক বিক্রিয়ার মাধ্যমে ধাপে ধাপে স্থায়িত্ব উপত্যকার ঢাল বেয়ে নামে। এই ক্ষয় ধারার প্রতিটি ধাপে উৎপন্ন নিউক্লাইড পূর্ববর্তী ধাপের চেয়ে বেশি বন্ধন শক্তি সম্পন্ন এবং ধারার সর্বশেষ নিউক্লাইডটি স্থিতিশীল।[১] স্থায়িত্ব উপত্যকা ধারণার মাধ্যমে স্থায়ী এবং অস্থায়ী প্রচুর সংখ্যক নিউক্লাইডগুলোকে সামঞ্জস্যপূর্ণভাবে সাজানোর একটি পদ্ধতি পাওয়া যায়, এবং কখন, কেন ও কী ধারায় তেজষ্ক্রিয় ক্ষয় ঘটে তার একটি সহায়ক চিত্র গঠিত হয়।[১]
-
স্থায়িত্ব উপত্যকার লেখচিত্র, নিউক্লাইড (আইসোটোপ) সমূহ বন্ধন শক্তিক্রমে সজ্জিত। কৌণিক রেখাটি সমসংখ্যক নিউট্রন ও প্রোটন সংখ্যা নির্দেশ করে। গাঢ় নীল বর্গগুলো প্রবলতম বন্ধন শক্তি সম্পন্ন তথা সবচে স্থিতিশীল নিউক্লাইডগুলোকে চিহ্নিত করে। স্থায়িত্ব উপত্যকার ভূমিতে বন্ধন শক্তি সর্বোচ্চ।
-
অর্ধায়ু অনুসারে সজ্জিত নিউক্লাইডের লেখচিত্র। কালো বর্গগুলো দীর্ঘতম অর্ধায়ু সম্পন্ন এবং সবচেয়ে স্থিতিশীল নিউক্লাইড চিহ্নিত করে। স্থায়িত্ব উপত্যকার ভূমিতে নিউক্লিয়াসগুলোর স্থায়িত্ব এবং আয়ু সর্বোচ্চ। নিউক্লাইডে ২০ টির বেশি প্রোটন থাকলে তার স্থায়িত্বের জন্য প্রোটনের চেয়ে অধিক সংখ্যক নিউট্রন প্রয়োজন।
-
ক্ষয়ের ধরন অনুসারে সজ্জিত নিউক্লাইড। কালো বর্গগুলো স্থায়িত্বপূর্ণ নিউক্লাইড নির্দেশ করে। হালকা নীল নিউক্লাইড অতিরিক্ত নিউট্রন বা প্রোটন বাহী, এবং যথাক্রমে β− (হালকা নীল) বা β+ (সবুজ) ক্ষয়যোগ্য। উচ্চ পারমাণবিক সংখ্যার নিউক্লাইডে আলফা ক্ষয় (কমলা) অথবা স্বতস্ফূর্ত ফিশন (গাঢ় নীল) এর সম্ভাবনা প্রবল।
নিউট্রনের ভূমিকা
পরমাণুর নিউক্লিয়াসের অভ্যন্তরে প্রোটন এবং নিউট্রন প্রায় একই রকম আচরণ করে। আইসোস্পিনের প্রায় সদৃশ প্রতিসাম্যের সাপেক্ষে এই কণাগুলোকে একইভাবে গণ্য হয়, তবে ভিন্ন কোয়ান্টাম দশায় রেখে। অবশ্য এই প্রতিসাম্য সম্পূর্ণ সদৃশ নয়, কারণ পারমাণবিক বল একটি জটিল ফাংশন যা নিউক্লিয়নের প্রকার, স্পিন, বৈদ্যুতিক আধান, ভরবেগ ইত্যাদি বিভিন্ন বৈশিষ্ট্যের ওপর এবং বিকেন্দ্রিক বলের ওপর নির্ভরশীল। পারমণাবিক বল প্রকৃতপক্ষে নিউক্লিয়নের পারিপার্শ্বিক সবল মিথষ্ক্রিয়ার অবশিষ্টাংশ। এসব জটিলতার একটি ফল হল, একটি প্রোটন ও নিউট্রনের সমন্বয়ে তৈরি ডিউটেরিয়াম স্থিতিশীল, কিন্তু ডাইপ্রোটন বা ডাইনিউট্রন স্থিতিশীল নয়।[১১] এর কারণ হচ্ছে নিউক্লিয় বল p-p বা n-n বন্ধন গঠন করার মত যথেষ্ট শক্তিশালী নয়।
স্থিতিশীল নিউক্লিয়াসে প্রোটন ও নিউট্রন সংখ্যা প্রায় কাছাকাছি হয়ে থাকে। যেমন কার্বন-১২ (12C) ছয়টি নিউট্রন ও ছয়টি প্রোটন দিয়ে গঠিত। কিন্তু প্রোটনের সংখ্য বৃদ্ধি পেলে সমধর্মী চার্জের কারণে কুলম্বের সূত্র অনুসারে তাদের মধ্যে বিকর্ষণও বৃদ্ধি পায়। নিউট্রনসমূহ প্রোটনসমুহকে পৃথক রেখে এই বিকর্ষণ হ্রাস করার মাধ্যমে নিউক্লিয়াসের স্থায়িত্বে ভূমিকা রাখে। তবে পারমাণবিক সংখ্যা বৃদ্ধির সাথে সাথে স্থায়িত্বের জন্য প্রয়োজনীয় নিউট্রনের সংখ্যা দ্রুততর হারে বৃদ্ধি পেতে থাকে। যেমন সবচে ভারী স্থায়ী মৌল সীসা (Pb) এর পরমাণুতে প্রোটন সংখ্যার চেয়ে অনেক বেশি নিউট্রন অবস্থিত: 206Pb নিউক্লিয়াসে Z = ৮২ এবং N = ১২৪। তাই স্থায়িত্ব উপত্যকা Z = N রেখা থেকে বিচ্যুত হয়ে যেতে শুরু করে, যখন A > ৪০ (Z = ২০ হল ক্যালসিয়াম)।[৩] বিটা স্থায়িত্ব রেখায় প্রোটন সংখ্যা বৃদ্ধির চাইতে নিউট্রন সংখ্যা বৃদ্ধির হার বেশি।
বিটা স্থায়িত্ব রেখা নিউট্রন-প্রোটন অনুপাতের একটি ঢাল অনুসরণ করে। স্থায়িত্ব উপত্যকার এক পাশে এই অনুপাত ক্ষুদ্র, যেখানে প্রোটনের সংখ্যা নিুট্রনের সংখ্যার চেয়ে অতিরিক্ত। এই নিউক্লাইডগুলো সাধারণত β+ ক্ষয় বা ইলেক্ট্রন হস্তান্তর এর কারণে অস্থায়ী। এই ক্ষয় নিউক্লাইডগুলোকে অধিকতর স্থায়ী নিউট্রন-প্রোটন অনুপাতে পৌঁছে দেয়। অপরপক্ষে স্থায়িত্ব উপত্যকার অপর পাশে β− ক্ষয় দ্বারা নিউক্লাইডগুলো অধিকতর স্থায়ী অবস্থানে পৌঁছায়।
নিউট্রন, প্রোটন ও বন্ধন শক্তি
টেমপ্লেট:আরও দেখুন পরমাণুর নিউক্লিয়াসের ভরের সূত্র হল:
যেখানে এবং যথাক্রমে একটি প্রোটন ও একটি নিউট্রনের ভর, নিউক্লিয়াসের মোট বন্ধন শক্তি। এখানে ভর শক্তি সাম্যতা নীতি ব্যবহৃত হয়েছে। প্রোটন ও নিউট্রনের ভরের সমষ্টি থেকে বন্ধন শক্তি বিয়োগ করা হয়েছে, কারণ ওই সমষ্টি থেকে মূল নিউক্লিয়াসের ভর কম। একে বলা হয় ভর ত্রুটি। এই ভর ত্রুটি বৈশিষ্ট্যটি নিউক্লিয়াসের স্থায়িত্বের একটি পূর্বশর্ত। নিউক্লিয়াসের অভ্যন্তরে নিউক্লাইডগুলো একটি বিভব খাদে আবদ্ধ থাকে। একটি অর্ধ-পরীক্ষালদ্ধ ভর সুত্র অনুসারে, বন্ধন শক্তিটি হবে নিম্নরূপ:
প্রায়ই EB কে ভর সংখ্যা দিয়ে ভাগ করে প্রতি নিউক্লিয়নের বন্ধন শক্তি নির্ণয় করা হয়, এবং এর সাহায্যে একাধিক নিউক্লিয়নের মধ্যে তুলনা করা যায়। এই সূত্রের প্রতিটি রাশির তত্ত্বীয় ভিত্তি রয়েছে। , , , সহগগুলো এবং এর সহগের মান পরীক্ষালদ্ধ।
বন্ধন শক্তির সূত্র থেকে নিউট্রন-প্রোটন অনুপাতের একটি পরিমাণগত অনুমান করা যায়। শক্তিটি টেমপ্লেট:Mvar এর চতুর্পদী সমীকরণ যা নিউট্রন-প্রোটন অনুপাত হলে সংকোচিত হয়ে যায়। নিউট্রন-প্রোটন অনুপাতের এই সমীকরণ থেকে জানা যায় যে স্থায়িত্বপূর্ণ নিউক্লাইডে প্রোটনের চেয়ে নিউট্রনের সংখ্যা হারে বৃদ্ধি পায়।

স্থায়িত্ব উপত্যকার মধ্যস্থিত বিটা স্থায়িত্ব রেখায় প্রতি নিউক্লিয়নের গড় বন্ধন শক্তিকে পারমাণবিক ভর সংখ্যার ফাংশন হিসেবে প্রদর্শন করা হয়েছে ডানের চিত্রটিতে। ক্ষুদ্র ভর সংখ্যার নিউক্লিয়াস (H, He, Li) এর জন্য গড় বন্ধন শক্তি ক্ষুদ্র, তবে ভর সংখ্যা বৃদ্ধির সাথে সাথে শক্তির পরিমাণ দ্রুততর হারে বৃদ্ধি পায়। নিকেল-৬২ (২৮ p, ৩৪ n) গড় বন্ধন শক্তি সর্বোচ্চ, এবং লোহা-৫৮ (২৬ p, ৩২ n) ও লোহা-৫৬ (২৬ p, ৩০ n) দ্বিতীয় এবং তৃতীয়[১৩] এই নিউক্লাইডগুলো স্থায়িত্ব উপত্যকার একদম তলদেশে অবস্থিত। এই অঞ্চল থেকে পারমাণবিক ভর সংখ্যা বৃদ্ধির সাথে সাথে গড় বন্ধন শক্তি ধীরে ধীরে দুর্বল হতে থাকে।ইউরেনিয়াম-২৩৮ ভারী নিউক্লাইডটি স্থায়িত্বপূর্ণ নয়, তবে ক্ষয় হয় খুব ধীরে (এর অর্ধায়ু ৪৫ কোটি বছর)।[১] এর প্রতি নিউক্লিয়নের বন্ধন শক্তি তুলনামূলকভাবে সামান্য।
β− ক্ষয়ের জন্য নিউক্লীয় বিক্রিয়ার সাধারণ রূপ হল:
- টেমপ্লেট:Physics particle → টেমপ্লেট:Physics particle + টেমপ্লেট:SubatomicParticle + টেমপ্লেট:SubatomicParticle[১৪]
যেখানে টেমপ্লেট:Mvar এবং টেমপ্লেট:Mvar হল যথাক্রমে নিউক্লিয়াসটির ভর সংখ্যা ও পারমাণবিক সংখ্যা, এবং X ও X′ যথাক্রমে প্রারম্ভিক ও সর্বশেষ নিউক্লাইড। অন্যদিকে β+ ক্ষয়ের জন্য: টেমপ্লেট:Physics particle → টেমপ্লেট:Physics particle + টেমপ্লেট:SubatomicParticle + টেমপ্লেট:SubatomicParticle[১৪] এই বিক্রিয়াগুলো নিউট্রন থেকে প্রোটনে রূপান্তর এবং প্রোটন থেকে নিউট্রনে রূপান্তরের অনুসারী। এই বিক্রিয়াগুলো স্থায়িত্ব উপত্যকার যেকোন এক পাশে শুরু হয় এবং নিউক্লাইডটিকে উপত্যকার অধিকতর বন্ধন শক্তির অবস্থানে তথা অধিকতর স্থায়ী অবস্থানে পৌঁছে দেয়।

ডান পাশের চিত্রটি A=125 ভরসংখ্যাবিশিষ্ট নিউক্লাইডের গড় বন্ধন শক্তি প্রদর্শন করে।[১৫] এই ঢালের তলদেশে রয়েছে স্থিতিশীল 52Te। 52Te এর বাম অবস্থিত নিউক্লাইডগুলো নিউট্রন আধিক্যের জন্য অস্থিতিশীল, এবং ডানের নিউক্লাইডগুলো প্রোটন আধিক্যের জন্য। বামের নিউক্লাইডে β− ক্ষয় ঘটে, যা নিউট্রনকে প্রোটনে রূপান্তর করে, এবং নিউক্লাইডটিকে ডানদিকে অধিক স্থায়িত্বের অবস্থানে পৌঁছে দেয়। একইভাবে ডানের নিউক্লাইডগুলো β+ ক্ষয়ের মাধ্যমে বামের অধিকতর স্থায়িত্বের অবস্থানে সরে আসে।
ভারী নিউক্লাইডে আলফা ক্ষয়ের সম্ভাবনা বেশি, এবং এদের নিউক্লীয় বিক্রিয়ার সাধারণ রূপ হল:
বিটা ক্ষয়ের মতই, ক্ষয়জাত উপাদান X′ বন্ধন শক্তি প্রবলতর এবং এটি স্থায়িত্ব উপত্যকার মধ্যভাগের নিকটবর্তী। আলফা কনাটি দুটি প্রোটন ও দুটি নিউট্রন সরিয়ে নিয়ে লঘুতর নিউক্লাইড গঠন করে। যেহেতু ভারী নিউক্লিয়াসে প্রোটনের চেয়ে বেশি সংখ্যক নিুট্রন থাকে, তাই আলফা ক্ষয়ের মাধ্যমে নিউট্রন-প্রোটন অনুপাত হ্রাস পায়।
প্রোটন ও নিউট্রন ক্ষরণ রেখা
টেমপ্লেট:মূল নিবন্ধ স্থায়িত্ব উপত্যকার সীমানা হল নিউট্রন-সমৃদ্ধ অঞ্চলে নিউট্রন ক্ষরণ রেখা, এবং প্রোটন-সমৃদ্ধ অঞ্চলে প্রোটন ক্ষরণ রেখা। ক্ষরণ রেখাগুলো নিউট্রন-প্রোটন অনুপাতের প্রান্তীয় সীমানা, এর বহিস্থ অনুপাত নিয়ে কোন নিউক্লিয়াস গঠিত হতে পারে না। সেগরে তালিকার বেশিরভাগ অংশের জন্য নিউট্রন ক্ষরণ রেখার অবস্থান স্পষ্ট নয়, তবে অনেক মৌলের জন্য প্রোটন এবং আলফা ক্ষরণ রেখা নির্ণীত হয়েছে। প্রোটন, নিউট্রন এবং আলফা কণার ক্ষরণ রেখা তিনটি সংজ্ঞায়িত, এবং প্রত্যেকেই পারমণাবিন পদার্থবিদ্যায় ভূমিকা রাখে।
স্থায়িত্ব উপত্যকার ঊর্ধ্ব-অভিমুখে নিউক্লাইডসমূহের বন্ধন শক্তির পার্থক্য বাড়তে থাকে, এবং অর্ধায়ু কমতে থাকে। কোন নিউক্লাইডে এক-এক করে নিউক্লিয়ন কণা যোগ করা হলে, একসময় এমন একটি নিউক্লাইড তৈরি হবে যা এতটাই অস্থায়ী যে গঠনের সঙ্গে সঙ্গেই প্রোটন বা নিউট্রন বিকিরণ করে ক্ষয় হয়ে যাবে। চলিত ভাষায়, নিউক্লিয়াসটি কণাগুলো 'লীক' বা 'ক্ষরণ' করে, ফলে "ক্ষরণ রেখা" নামটির উৎপত্তি হয়েছে।
প্রকৃতিতে প্রাপ্ত নিউক্লাইডে প্রোটন ক্ষরণ ঘটে না। প্রোটন ক্ষরণকারী নিউক্লাইড তৈরি করা যায় নিউক্লীয় বিক্রিয়ার মাধ্যমে, সাধারণত রৈখিক পার্টিকেল অ্যাক্সিলারেটরে। ১৯৬৯ সালে কোবাল্ট-৫৩ এর আইসোমারে অবিলম্বিত প্রোটন ক্ষরণ পরিলক্ষিত হলেও পরবর্তী উদাহরণটির জন্য ১৯৮১ পর্যন্ত অপেক্ষা করতে হয়েছিল, যখন পশ্চিম জার্মানির একটি গবেষণাকেন্দ্রে লুটিশিয়াম-১৫১ এবং থুলিয়াম-১৪৭ এর সুপ্তাবস্থায় প্রোটন তেজষ্ক্রিয়তা আবিষ্কৃত হয়।[১৬] আবিষ্কারের পর এই ক্ষেত্রে গবেষণায় গতি আসে এবং এ পর্যন্ত ২৫টিরও বেশি নিউক্লাইডে প্রোটন ক্ষরণ বৈশিষ্ট্য আবিষ্কৃত হয়েছে। প্রোটন বিকিরণের গবেষণা থেকে পরমাণুর বিকৃতি, ভর ও গঠন সম্পর্কে স্পষ্টতর ধারণা পাওয়া গেছে, এবং এটি কোয়ান্টাম টানেলিংয়ের একটি উদাহরণ।
নিউট্রন বিকিরণকারী নিউক্লাইডের দুটি উদাহরণ হল বেরিলিয়াম-১৩ (গড় আয়ু ২.৭×১০−২১s) এবং হিলিয়াম-৫ (৭×১০−২২s)। যেহেতু এসময় কেবল নিউট্রন সংখ্য হ্রাস পায়, প্রোটন সংখ্যা অপরিবর্তিতই থাকে, তাই পরমাণুটি নতুন পদার্থের পরমাণুতে পরিণত হয় না। বরং মূল পরমাণুটির একটি আইসোটোপ গঠন করে, যেমন বেরিলিয়াম-১৩ একটি নিউট্রন ক্ষরণ করে বেরিলিয়াম-১২-তে পরিণত হয়।[১৭]
পারমাণবিক প্রকৌশলে একটি অবিলম্বিত নিউট্রন হচ্ছে নিউক্লীয় ফিশন থেকে মুক্তিপ্রাপ্ত নিউট্রন। একটি অস্থায়ী ফিশনযোগ্য ভারী নিউক্লিয়াসের ফিশন থেকে প্রায় অবিলম্বিতভাবে নিউট্রন বিকিরিত হয়। অন্যদিকে বিলম্বিত নিউট্রন একটই ঘটনার মাধ্যমে তৈরি হতে পারে; এরা ফিশনজাত উপাদানের বিটা ক্ষয় থেকে উৎপন্ন হয়। কয়েক মিলিসেকেন্ড থেকে কয়েক মিনিট সময়কালে বিলম্বিত নিউট্রন উৎপন্ন হতে পারে।[১৮] মার্কিন পারমাণবিক নিয়ন্ত্রণ কমিশন এর সংজ্ঞানুসারে অবিলম্বিত নিউট্রন হল ফিশনের পর ১০−১৪ সেকেন্ডের মধ্যে নি:সৃত নিউট্রন।[১৯]
স্থায়িত্ব দ্বীপ
টেমপ্লেট:মূল নিবন্ধ স্থায়িত্ব উপত্যকার বাইরে স্থায়িত্ব স্বীপ নামে এলাকার উপস্থিতির পূর্বাভাস রয়েছে, যেখানে বিশেষ কিছু প্রোটন ও নিউট্রন সংখ্যা সম্পন্ন ভারী আইসোটোপ স্থায়িত্ব প্রদর্শন করতে পারে, এমনকি অতি তেজষ্ক্রিয় ইউরেনিয়ামের চেয়েও ভারী নিউক্লিয়াসও।
স্থায়িত্ব দ্বীপ তত্ত্বের ভিত্তি হচ্ছে নিউক্লীয় শেল কাঠামো, যা বর্ণনা করে যে পরমাণুর নিউক্লিয়াস কিছু "শেল" দ্বারা তৈরি, অনেকটা পরমাণুর ইলেক্ট্রন শেলের মতই। উভয় ক্ষেত্রেই শেল হচ্ছে প্রকৃত পক্ষে ক্রমান্বয়ে সজ্জিত কোয়ান্টাম শক্তিস্তর। দুটি শেলে কোয়ান্টাম অবস্থায় শক্তি স্তরদ্বয় একটি তুলনামূলক প্রশস্ত শক্তি খাদ দ্বারা বিচ্ছিন্ন থাকে। তাই যখন নিউট্রন ও প্রোটনের সংখ্যা একটি শেলের শক্তিস্তর সম্পূর্ণভাবে পূরণ করে ফেলে, তখন ওই নিউক্লিয়াসের বন্ধন শক্তি একটি স্থানীয় তীব্রতা লাভ করে, এবং নিউক্লিয়াসের এই দশাটি পূর্ণ শেলবিহীন অন্যান্য নিউক্লিয়াসের চেয়ে অধিক স্থায়িত্ব অর্জন করে।[২০]
একটি পূ্র্ণ শেলে নিউট্রন ও প্রোটন "ম্যাজিক সংখ্যা" বা বিশেষ সংখ্যায় উপস্থিত থাকে। গোলাকার নিউক্লিয়াসের জন্য একটি সম্ভাব্য নিউট্রন ম্যাজিক সংখ্যা হচ্ছে ১৮৪, এবং এর সাপেক্ষে স্থায়ী প্রোটন ম্যাজিক সংখ্যা ১১৪, ১২০, এবং ১২৬। এই বিন্যাস থেকে প্রতীয়মান হয় যে এধরনের অধিকাংশ স্থায়ী আইসোটোপ হতে পারে ফ্লেরোভিয়াম-২৯৮, উনবাইনিলিয়াম-৩০৪ এবং উনবাইহেক্সিয়াম-৩১০। এর মধ্যে 298Fl লক্ষণীয়, যা দ্বি-ম্যাজিক সংখ্যা ধারী, অর্থাৎ এর প্রোটন সংখ্যা, ১১৪, এবং নিউট্রন সংখ্যা, ১৮৫, দুটিই ম্যাজিক সংখ্যা হিসেবে গণিত। এই আইসোটোপের অর্ধায়ু খুবই দীর্ঘ হবে বলে অনুমান করা হয়। পরবর্তী লঘুতর গোলাকার দ্বি-ম্যাজিক নিউক্লিয়াস হচ্ছে Pb-২০৮, যা জানামতে সবচে ভারী স্থিতিশীল নিউক্লিয়াস এবং সবচে স্থিতিশীল ভারী ধাতু।
আলোচনা
স্থায়িত্ব উপত্যকা ধারণাটি নিউক্লীয় ক্ষয় প্রক্রিয়া, যেমন ক্ষয় ধারা বা নিউক্লীয় ফিশন, প্রভৃতির বৈশিষ্ট্য বিশ্লেষণে ভূমিকা রাখতে পারে।

তেজষ্ক্রিয় ক্ষয় সাধারণত কিছু ক্রমানুসারী ধাপে সম্পন্ন হয়, যাকে ক্ষয় ধারা বলা হয়। যেমন, 238U ক্ষয় থেকে 234Th, 234Th ক্ষয় থেকে 234mPa, এবং এভাবে অবশেষে 206Pb এ উপনীত হওয়া যায়:
এই ধারার প্রতিটি ধাপের প্রতিক্রিয়ায় শক্তি নিঃসৃত হয় এবং ক্ষয়লদ্ধ নিউক্লিয়াস ক্রমান্বয়ে স্থায়িত্ব উপত্যকার ঢাল বেয়ে বিটা স্থায়িত্ব রেখার দিক গমন করে। ধারার সর্বশেষ নিউক্লাইড 206Pb, যা স্থিতিশীল এবং বিটা স্থায়িত্ব রেখাস্থিত।

পারমাণবিক রিঅ্যাক্টরে অনুষ্ঠিত নিউক্লীয় ফিশন প্রক্রিয়া নিউট্রন পরিত্যাগ করে, যা নিউক্লীয় শৃঙ্খল বিক্রিয়া চলমান রাখে। ফিশনকালে একটি ভারী নিউক্লাইড মুক্ত নিউট্রন গ্রহণ করে লঘুতর উপাদানে বিভক্ত হয়ে যায় (যেমন ইউরেনিয়াম-২৩৫ থেকে বেরিয়াম বা ক্রিপ্টন) এবং সাধারণত আরও নিউট্রণ কণা মুক্ত করে। অন্যান্য ভারী নিউক্লাইডের মত ইউরেনিয়ামেরও স্থায়িত্বের জন্য নিউট্রন-প্রোটন অনুপাত (N/Z) বৃহৎ হতে হয়। ফিশন থেকে উৎপন্ন নিউক্লিয়াসের N/Z অনুপাত কম হয়, তবে ইউরেনিয়ামের প্রায় অর্ধেক পারমাণবিক সংখ্যা গ্রহণ করে।[১] যেসব আইসোটোপে ফিশনজাত নিউক্লিয়াসের মত প্রোটন সংখ্যা এবং ফিশনযোগ্য নিউক্লিয়াসের মত N/Z অনুপাত থাকে, তাদের নিউট্রনের সংখ্যা স্থায়িত্বে সহায়ক না, বরং অনেক বেশি হয়। একারণেই সাধারণত ফিশন কালে মুক্ত প্রোটনের পরিবর্তে মুক্ত নিউট্রন নিঃসৃত হয়, এবং একই কারণে ফিশনজাত নিউক্লাইডসমূহ একটি দীর্ঘ β− ক্ষয় ধারায় চালিত হয়, যার প্রতিটি ধাপের নিউক্লিয়াসটি N/Z থেকে (N − 1)/(Z + 1) রূপ লাভ করে।
একটি নির্দিষ্ট হারে ফিশন বিক্রিয়া চালানো হলে (যেমন তরল-শীতলকৃত কিংবা কঠিন নিউক্লাইড দ্বারা) প্রচুর অ্যান্টিনিউট্রিনো উৎপন্ন হয়। ফিশনজাত নিউক্লিয়াসগুলো β− ক্ষয় ধারার মাধ্যমে স্থায়িত্ব উপত্যকায় চালিত হবার সময় প্রতিটি β− কণার পাশাপাশি একটি অ্যান্টিনিউট্রিনোও বিকিরণ করে। ১৯৫৬ সালে, ফ্রেডেরিক রাইনেস এবং ক্লাইড কাওয়ান নিউক্লিয়ার রিঅ্যাক্টরে উৎপন্ন (অনুমিত) প্রবল নিউট্রিনো স্রোতের সহায়তায় কাওয়ান–রাইনেস নিউট্রিনো পরীক্ষা দ্বারা এই দুর্লভ কণাগুলো সনাক্ত এবং এদের বাস্তব উপস্থিতি প্রমাণ করতে সক্ষম হয়েছিলেন।[২১]
আরও দেখুন
- আলফা ক্ষয়
- গামা ক্ষয়
- নিউট্রন বিকিরণ
- প্রোটন বিকিরণ
- গুচ্ছ ক্ষয়
- স্থিতিশীল নিউক্লাইড
- পরমাণুর শেল কাঠামো
- পারমাণবিক ক্ষরণ রেখা
তথ্যসূত্র
বহিঃসংযোগ
The Live Chart of Nuclides - IAEA ক্ষয়ের প্রকারভেদের ফিল্টার করা- The Valley of Stability (video) - নিউক্লাইড তালিকার ত্রিমাত্রিক চিত্রে ভার্চুয়াল ভ্রমণ, ফরাসি বিকল্প শক্তি এবং পারমাণবিক শক্তি কমিশনের প্রযোজিত
- The nuclear landscape: The variety and abundance of nuclei - ম্যাকিনটশ, আই-খালিলি, জনসন, এবং পেনার লিখিত নিউক্লিয়াস: এ ট্রিপ ইনটু দ্য হার্ট অফ ম্যাটার বইয়ের ৬ষ্ঠ অধ্যায়ে স্থায়িত্ব উপত্যকার আলোচনা রয়েছে (Baltimore, MD:The Johns Hopkins University Press), 2001. টেমপ্লেট:ISBN
- ↑ ১.০ ১.১ ১.২ ১.৩ ১.৪ ১.৫ ১.৬ টেমপ্লেট:বই উদ্ধৃতি
- ↑ The Valley of Stability (video) - a virtual "flight" through 3D representation of the nuclide chart, by CEA (France)
- ↑ ৩.০ ৩.১ ৩.২ ৩.৩ টেমপ্লেট:বই উদ্ধৃতি
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ টেমপ্লেট:সংবাদ উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতি
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতি
- ↑ ১৪.০ ১৪.১ টেমপ্লেট:বই উদ্ধৃতি
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতি
- ↑ টেমপ্লেট:Citation
- ↑ টেমপ্লেট:Citationটেমপ্লেট:অকার্যকর সংযোগ
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতি
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতি