গামা বণ্টন
<poem> পরিসংখ্যানবিদ্যাতে ব্যবহৃত বিভিন্ন সম্ভাব্যতা বণ্টনের মধ্যে গামা বণ্টন (Gamma Distribution) একটি গুরুত্বপূর্ণ বণ্টন। গামা বণ্টনের চিহ্ন হিসেবে সচরাচর কে ব্যবহার করা হয়। নানাবিধ প্রাকৃতিক প্রক্রিয়াতে গামা বণ্টন দেখা যায়। বিশেষ করে যেখানে পয়সন বণ্টন অনুসরণকারী ঘটনার মধ্যবর্তী সময়ের প্রসঙ্গ নিয়ে আলোচনা আসে। </poem>

| গামা বণ্টন এর ডেন্সিটি ফাংশন |
|---|
|
এখানে ব্যবহৃত কে বলা হয় প্যারামিটার স্পেস (প্যারামিটারের মানের সেট)। গামা বণ্টন দুটো প্যারামিটারের উপর নির্ভর করে | কে বলা হয় গামা ফাংশন(gamma function) । গামা বণ্টনকে বসিয়ে সূচকীয় বণ্টন(expoential distribution) এ পরিণত করা যায় | | সেজন্য এভাবে লেখা যায় :
গামা ফাংশনের বৈশিষ্ট্য :
|
|
প্রমাণ :
বসালেই সমীকরণ থেকে এর প্রমাণ করা যায়। (ii) একে চলক প্রতিস্থাপন পদ্ধতির সাহায্য নিয়ে সহজেই প্রমাণ করা যায় |
(iii)আংশিক সমাকলন(Partial Integration)পদ্ধতি ব্যবহার করে
(iv)পূণর্সংখ্যা n এর জন্য,
(v) যেহেতু হল গামা বণ্টনের সম্ভাব্যতা ঘনত্ব ফাংশন(সম্ভাব্যতা ঘনত্ব ফাংশনের(probability density function) সংঙ্গানুযায়ী
"ব্যখ্যাঃ" সম্ভাব্যতাকে যদি P দিয়ে চিহ্নায়িত করা হয়, আমরা জানি 0 <= P <= 1 । র্যান্ডম ভ্যারিয়েবল(X) এর মান যদি বিচ্ছিন্ন না হয়ে অবিচ্ছন্ন হয় অর্থাৎ X এর কোন বিচ্ছিন্ন মান X = a না থেকে বরং X এর মান কোন একটা রেঞ্জ অর্থাৎ পরিসরের(a < X < b)মধ্যে থাকে তাহলে আমরা X এর মান a থেকে b এর মধ্যে থাকার সম্ভাবনা P(a < X < b) কে নিম্নের সমীকরণের সাহায্যে প্রকাশ করতে পারি
যেখানে হল অবিচ্ছিন্ন সম্ভাব্যতা ঘনত্ব ফাংশন(continuous probability density function) | আর হলে সম্ভাব্যতার মান যে ১(পূর্ণ সম্ভাবনা) হবে তা সহজেই বোঝা যায় । গামা বণ্টনের ক্ষেত্রে আমরা আগেই উল্লেখ করেছি |
সম্ভাব্যতা ঘনত্ব ফাংশনের ইন্টেগ্রেশনের মান কেন ১ হচ্ছে তা এর থেকে সহজেই বোঝা যায় । গামা বণ্টনের গড় E[X]
|