ফ্রিদমান সমীকরণ

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন

টেমপ্লেট:উৎসহীনটেমপ্লেট:বিশ্বতত্ত্ব এই সমীকরণগুলো রাশিয়ান জ্যোতির্বিজ্ঞানী আলেক্সান্দ্র্‌ আলেক্সান্দ্রোভিচ ফ্রিদমান প্রবর্তন করেন।

সূত্রগুলো হলো:

H2(a˙a)2=8πGρ+Λ3Kc2a2
3a¨a=Λ4πG(ρ+3pc2)

where ρ and p are the density and pressure of the fluid, Λ

আরও সরল রূপ হলো:

ρρΛ8πG

pp+Λc28πG

যা থেকে আমরা পাই:

H2(a˙a)2=8πG3ρKc2a2
3a¨a=4πG(ρ+3pc2)

সংকট ঘনত্ব

মহাবিশ্বের সম্প্রসারণ শেষমেশ থেমে গিয়ে, সংকোচন শুরু হওয়ার জন্য মহাজাগতিক ভর-ঘনত্বকে সর্বনিম্ন যে মানবিশিষ্ট হতে হবে তাকে সংকট ঘনত্ব (critical density) বলা হয়। মহাজাগতিক ভর-ঘনত্ব যদি সংকট ঘনত্বের চেয়ে বেশি হয় তাহলে মহাবিশ্ব স্থানিকভাবে(spatially) সসীম হবে। একে ρc দ্বারা সূচিত করা হয়।

সংকট ঘনত্বের সমীকরণ

ধরা যাক, R ব্যাসার্ধের একটি সুষম গোলকের মধ্যে রয়েছে অনেকগুলি ছায়াপথ। (হিসাবের সুবিধার্থে ধরে নিচ্ছি যে, যেকোন দুইটি ছায়াপথগুচ্ছের মধ্যকার দূরত্বের তুলনায় বড় হলেও মহাবিশ্বের সামগ্রিক আকৃতির তুলনায় R ক্ষুদ্রতর।)

এই সুষম গোলকটির ভর(M) হবে এর আয়তন ও মহাজাগতিক ভর-ঘনত্ব(ρ) এর গুণফলের সমান:

                                      M=4πR33ρ

এই গোলকটির পৃষ্ঠদেশে অবস্থিত যেকোন ছায়াপথের বিভব শক্তি নিউটনের মহাকর্ষতত্ত্ব থেকে পাওয়া যায়:

                                      P.E.=mMGR=4πmR2ρG3

যেখানে, m হলো ছায়াপথটির ভর, এবং G হলো সার্বজনীন মহাকর্ষীয় ধ্রুবক

                                     G=6.673*1011Nm2kg2

হাবলের নীতি অনুসারে ছায়াপথটির দ্রুতি V হবে,

                                     V=HR

যেখানে H হলো হাবলের ধ্রুবক। সুতরাং গোলকপৃষ্ঠে অবস্থিত ছায়াপথটির গতিশক্তি হবে,

                                    K.E.=12mV2=12mH2R2

এখন ছায়াপথটির বিভব শক্তি এবং গতিশক্তির সমষ্টি নিলে পাওয়া যাবে এর মোট শক্তি,

                                   E=P.E.+K.E.=mR2[12H243πρG]

শক্তির নিত্যতার নীতি অনুযায়ী মহাবিশ্ব সম্প্রসারিত হলেও মোট শক্তি(E) এর মান সদা অপরিবর্তীত থাকবে।

যদি E এর মান ঋণাত্মক হয়, তাহলে মহাবিশ্ব কখনোই অসীম পরিমাণে সম্প্রসারিত হতে পারবে না, কারণ অসীম দূরত্বে বিভবশক্তির মান নগণ্য হওয়ায় মোট শক্তির সিংহভাগ থাকে গতিশক্তি, যা কিনা সবসময়ই ধনাত্মক। অন্যদিকে, E এর মান ধনাত্মক হলে অসীম দূরত্বেও কিছু গতিশক্তি অবশিষ্ট থাকায় মহাবিশ্বের পক্ষে অসীম পরিমাণ সম্প্রসারণ সম্ভবপর হয়। সুতরাং, ছায়াপথটি কাঁটায় কাঁটায় মুক্তিবেগ প্রাপ্ত হওয়ার শর্ত হবে,

                                   12H2 = 43πρG

অন্যভাবে বলতে গেলে, এ অবস্থার জন্য ঘনত্বের মান হতে হবে,

                                  ρc = 3H28πG

এটাই হলো সংকট ঘনত্বের সমীকরণ। (এখানে নিউটনীয় পদার্থবিদ্যা ব্যবহৃত হলেও মহাবিশ্বের অন্তর্গত বস্তুসমূহ দারুনরকম আপেক্ষিক হলে সেক্ষেত্রেও এই সমীকরণটি প্রযোজ্য হবে- কেবল ρ কে মোট শক্তি-ঘনত্ব এবং c2 এর অনুপাত হিসেবে বিবেচনা করতে হবে।)

উদাহরণস্বরপ, যদি H এর অধুনা জনপ্রিয় মান ১৫ কিলোমিটার প্রতি সেকেন্ড প্রতি মিলিয়ন আলোকবর্ষ(১ আলোকবর্ষ = ৯.৪৬ x ১০১২ কিলোমিটার) ব্যবহার করা হয় তবে:

             ρc = 38π(6.67*108cm3/gmsec2)(15km/sec/106ltyrs9.46*1012km/ltyr)2=4.5*1030gm/cm2

প্রতি গ্রামে নিউক্লীয় কণা আছে ৬.০২ X ১০২৩ টি। সুতরাং সংকট ঘনত্বের এই মান নির্দেশ করে যে, প্রতি ঘনসেন্টিমিটারে ২.৭ X ১০−৬ টি তথা প্রতি লিটারে ০.০০২৭ টি নিউক্লীয় কণা রয়েছে।

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা

টেমপ্লেট:অসম্পূর্ণ

টেমপ্লেট:জ্যোতির্বিজ্ঞান-অসম্পূর্ণ