মহাবৃত্ত

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন
একটি মহাবৃত্ত (টেমপ্লেট:লাল রেখা) গোলকটিকে দুটি সমান গোলার্ধে বিভক্ত করেছে।

একটি গোলকের কেন্দ্রগামী যে কোন সমতল এবং গোলক-পৃষ্ঠের ছেদ রেখাই মহাবৃত্ত বা গুরুবৃত্ত বা বৃহৎ বৃত্ত যাকে ইংরেজিতে great cicle বা orthodrome বলা হয়। অন্যভাবে বলা যায়, কোন গোলকের পৃষ্ঠে যে সর্ব বৃহৎ বৃত্ত আঁকা সম্ভব সেটাই মহাবৃত্ত। আবার, একটি গোলককে তার কেন্দ্রগামী যে কোন অক্ষের লম্বদিকে সমান পুরুত্বের অসংখ্য পাতলা গোলাকার চাকতিতে কর্তন করা হলে যে চাকতিটির ব্যাসার্ধ অন্য সব চাকতির চেয়ে বড় হবে অর্থাৎ যে চাকতিটির কেন্দ্র গোলকটির কেন্দ্র হবে সেই চাকতিটির প্রান্ত রেখাই (পরিধি) মহাবৃত্ত। একটি গোলকের পৃষ্ঠে অসীম সংখ্যক মহাবৃত্ত আঁকা সম্ভব। গোলকের কেন্দ্রব্যাসার্ধই গোলকটির যে কোন মহাবৃত্তের কেন্দ্র ও ব্যাসার্ধইউক্লিডীয় ত্রিমাত্রিক স্থানে প্রতিটি বৃত্তই কোন না কোন গোলকের মহাবৃত্ত। মহাবৃত্তের শর্ত দুটি রয়েছে। যথা: (i) এটি গোলককে সমান দুটি গোলার্ধে বিভক্ত করে এবং (ii) বিভাজক তল অবশ্যই গোলকের কেন্দ্রগামী।

কোন গোলকের পৃষ্ঠের একটি বিন্দু থেকে সরল রেখা বরাবর যাত্রা শুরু করে এর কেন্দ্রের মধ্য দিয়ে গমন করলে সরল রেখাটি গোলকের অপর পৃষ্ঠকে যে বিন্দুতে ছেদ করে তাই পূর্বোক্ত বিন্দুর বিপরীত-পৃষ্ঠ বিন্দু বা প্রতিপাদ বিন্দু বা antipodal point। যেমন— ভৌগোলিক উত্তর ও দক্ষিণ মেরু পরস্পরের বিপরীত-পৃষ্ঠ বিন্দু। কোন গোলকের পৃষ্ঠস্থ দুটি বিন্দু পরস্পরের বিপরীত-পৃষ্ঠ বিন্দু বা প্রতিপাদ বিন্দু না হলে এ দুটি বিন্দু দিয়ে কেবল একটি মহাবৃত্ত অতিক্রম করবে, অপরদিকে ঐ বিন্দুদ্বয় পরস্পরের বিপরীত-পৃষ্ঠ বিন্দু হলে এই বিন্দুদুটিকে ছেদ করে এমন অসংখ্য মহাবৃত্ত পাওয়া যাবে। যেমন— পৃথিবীর উত্তরদক্ষিণ মেরু অতিক্রমকারী অসংখ্য মহাবৃত্ত পাওয়া যাবে। গোলক পৃষ্ঠের যে কোন দুটি বিন্দু দিয়ে অতিক্রমকারী মহাবৃত্তের বৃত্তচাপ হল ঐ বিন্দুদ্বয়ের অন্তর্গত ক্ষুদ্রতম বৃত্তচাপ এবং এই বৃত্তচাপ উক্ত বিন্দুদ্বয়ের ক্ষুদ্রতম দূরত্বকে নির্দেশ করে। একারণে এক স্থান থেকে কোন গন্তব্যে যাওয়ার উদ্দেশ্যে জাহাজ ও বিমানগুলো তাদের চলার পথে ঐ স্থান দুটি দিয়ে কল্পিত মহাবৃত্তকে অনুসরণ করার চেষ্টা করে। কারণ এতে জ্বালানি ও সময় দুটিরই সাশ্রয় হয়। তবে স্থলপথের ক্ষেত্রে বিভিন্ন বাধার (যেমন— পাহাড়) কারণে মহাবৃত্ত রেখাকে অনুসরণ অসুবিধাজনক। উল্লেখিত ক্ষুদ্রতম বৃত্তচাপ ইউক্লিডীয় জ্যামিতির সরল রেখার ধারণার অনুরূপ। রেইম্যানীয় জ্যামিতিতে গোলীয় পৃষ্ঠের এ ধরনের (ক্ষুদ্রতম বৃত্তচাপ) দূরত্বকেই বিবেচনা করা হয় এবং রেইম্যানীয় বৃত্ত আদতে মহাবৃত্ত। এই মহাবৃত্তগুলোকে বা তাদের বৃত্তচাপকেই গোলকের জিওডেসিক বলা হয়।

উচ্চতর মাত্রার ক্ষেত্রে, n-গোলকRn + 1 ইউক্লিডীয় স্থানে উৎসগামী দ্বি-সমতলের ছেদরেখাই n-গোলকের মহাবৃত্ত।

যে কোন গোলকের ন্যায় পৃথিবীর ক্ষেত্রেও অসীম সংখ্যক মহাবৃত্ত বিদ্যমান। পৃথিবীর নিরক্ষ রেখা বা বিষুব রেখা একটি মহাবৃত্ত যা পূর্ব-পশ্চিম দিক বরাবর পৃথিবীকে উত্তর মেরুদক্ষিণ মেরু থেকে সমান দূরত্বে দুটি সমান গোলার্ধে বিভক্ত করে। তবে নিরক্ষ রেখার সমান্তরাল অন্যান্য অক্ষরেখাগুলো মহাবৃত্ত নয়। এছাড়াও চৌম্বক নিরক্ষরেখা, তাপীয় নিরক্ষরেখাও (২১শে মার্চ ও ২৩শে সেপ্টেম্বর) মহাবৃত্ত। টেমপ্লেট:Math দ্রাঘিমা রেখাটেমপ্লেট:Math দ্রাঘিমা রেখার সমন্বয়ে যে বৃত্ত পাওয়া যায় তা একটি মহাবৃত্ত। অনুরূপভাবে, টেমপ্লেট:Math পূর্ব এবং টেমপ্লেট:Math পশ্চিম দ্রাঘিমা রেখার সমন্বয়ে কল্পিত বৃত্তও মহাবৃত্ত।[]

ক্ষুদ্রতম দূরত্ব প্রতিপাদন

গোলক পৃষ্ঠের দুটি বিন্দুর ক্ষুদ্রতম বৃত্তচাপই যে গোলীয় তল বরাবর উক্ত বিন্দুদ্বয়ের ক্ষুদ্রতম দূরত্ব তা পরিবর্তনী ক্যালকুলাসের সাহায্যে প্রমাণ করা যায়।

p বিন্দু থেকে q বিন্দুর দিকে সকল নিয়মিত পথ বিবেচনা করা যাক। গোলকীয় স্থানাঙ্ক ব্যবস্থায় p বিন্দুকে উত্তর মেরুতে বিবেচনা করা যাক। প্রান্তবিন্দু ব্যতীত কোন মেরুকে ছেদ করে না এমন বক্র রেখার পরামিতি হবে নিম্নরূপ:—

θ=θ(t),ϕ=ϕ(t),atb

এখানে ϕ হল যে কোন বাস্তব সংখ্যা। এই (গোলীয়) স্থানাঙ্কে ক্ষুদ্রাতিক্ষুদ্র বৃত্তচাপ দৈর্ঘ্য হবে:

ds=rθ'2+ϕ'2sin2θdt.

সুতরাং p থেকে q বিন্দুতে γ বক্ররেখাটির দৈর্ঘ্য নিম্নোক্ত বক্ররেখার ফাংশনাল হবে:

S[γ]=rabθ'2+ϕ'2sin2θdt.

S[γ] কে দূর করা যাবে, অয়লার-ল্যাগ্রাঞ্জ সমীকরণ অনুসারে যদি এবং কেবল যদি sin2θϕθ'2+ϕ'2sin2θ=C হয়, যেখানে C হল একটি t-অনির্ভর ধ্রুবক, এবং

sinθcosθϕ'2θ'2+ϕ'2sin2θ=ddtθθ'2+ϕ'2sin2θ.

উক্ত সমীকরণদ্বয়ের প্রথমটি থেকে পাই—

ϕ=Cθsinθsin2θC2.

নির্দিষ্ট সীমার মধ্যে উভয় পক্ষকে সমাকলন করলে C এর বাস্তব সমাধান হবে শূন্য। একইভাবে, বক্ররেখাটিকে গোলকের একটি দ্রাঘিমা রেখা বরাবর নির্দেশ করা হলে ϕ=0 হবে এবং θ এর মান 0θ0 এর মধ্যে থাকবে। কার্তেসীয় স্থানাঙ্কে এটা হবে:

xsinϕ0ycosϕ0=0

যা উৎসগামী (যেমন— গোলকের কেন্দ্র) একটি সমতল নির্দেশ করে।

প্রয়োগ

খ-গোলকে উল্লেখযোগ্য কয়েকটি মহবৃত্ত হল: নিরক্ষরেখা, ভৌগোলিক নিরক্ষরেখা, ভৌগোলিক দিগন্ত, সূর্যপথ[], চৌম্বক নিরক্ষরেখা, তাপীয় নিরক্ষরেখা (২১শে মার্চ ও ২৩শে সেপ্টেম্বর)। এছাড়া যে কোন দ্রাঘিমা রেখা এবং এর বিপরীত দ্রাঘিমা রেখাও মহাবৃত্ত গঠন করে। যেমন মূল মধ্যরেখা বা টেমপ্লেট:Math দ্রাঘিমা রেখা এবং টেমপ্লেট:Math দ্রাঘিমা রেখা একটি মহাবৃত্ত তৈরি করে। অনুরূপভাবে, টেমপ্লেট:Math পূর্ব এবং টেমপ্লেট:Math পশ্চিম দ্রাঘিমা রেখার সমন্বয়ে কল্পিত বৃত্তও একটি মহাবৃত্ত।

যেহেতু গোলীয় পৃষ্ঠের যে কোন দুটি বিন্দুগামী ক্ষুদ্রতম চাপ গোলীয় পৃষ্ঠ বরাবর ঐ বিন্দুদ্বয়ের ক্ষুদ্রতম দূরত্বকে নির্দেশ করে এবং যেহেতু এই ক্ষুদ্রতম চাপ (জিওডেসিক) আদতে মহাবৃত্তের অংশবিশেষ তাই পৃথিবী (যদিও পৃথিবী প্রকৃত গোলাকার নয়) এবং অন্যান্য গোলীয় জ্যোতির্বৈজ্ঞানিক বস্তুর পৃষ্ঠতলের দুটি অবস্থানের নেভিগেশনে বিশেষতঃ আকাশ পথ ও জলপথের দিক নির্দেশনার ক্ষেত্রে এর প্রয়োগ গুরুত্বপূর্ণ। মহাবৃত্ত বরাবর দূরত্ব সর্বাপেক্ষা কম দূরত্ব হওয়ায় জাহাজ ও বিমানগুলোর চলার পথকে যথাসম্ভব মহাবৃত্তীয় রাখার চেষ্টা করা হয়। কারণ এতে যেমন জ্বালানি সাশ্রয় হয় তেমনি সময়ের ব্যবধানও কমে।

আরও দেখুন

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা

  1. Lectures of Prof. S.S. Ojha, University of Allahabad
  2. পৃথিবীর উপর দিয়ে কল্পিত যে রেখা বরাবর সূর্য গমন করে তাকে সূর্যপথ বা ecliptic বলে।