সেটের অ্যালজেব্রা

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন
অন্তর দ্বারা সেটগুলির একটি বীজগণিতের ভিজ্যুয়াল চিত্রায়ন

একটি সেট যদি X হয়, তবে ওই সেটের অ্যালজেব্রা হলো X-এর পাওয়ার সেটের এমন একটি অশূন্য সাবসেট যা সেটের সংযোগ, ছেদ ও পূরক অপারেশনের অধীনে আবদ্ধ। অর্থাৎ, সেট X এর অ্যালজেব্রা Σ হলে:

  1. Σ অশূন্য: অন্তত একটি AX হচ্ছে Σ এর সদস্য।
  2. Σ সেট পূরকের অধীনে আবদ্ধ: যদি AΣ হয়, তাহলে, AcΣ হবে।
  3. Σ সেট সংযোগের অধীনে আবদ্ধ: যদি A,BΣ হয়, তবে ABΣ হবে।

পূরক ও সংযোগের অধীনে আবদ্ধ হলেও খুব সহজেই বের করা যায় যে অ্যালজেব্রা সেট ছেদের অধীনেও আবদ্ধ, কেননা, AB=(AcBc)c

তথ্যসূত্র

টেমপ্লেট:সূত্র তালিকা

বহিঃসংযোগ