চিরায়ত বলবিদ্যার সমীকরণের তালিকা
চিরায়ত বলবিদ্যা হলো পদার্থবিজ্ঞানের সেই শাখা যা স্থূল বা ম্যাক্রোস্কোপিক বস্তুসমূহের গতি বর্ণনা করতে ব্যবহার করা হয়।[১] পদার্থবিজ্ঞানের তত্ত্বগুলোর মধ্যে এটি সবচেয়ে বেশি পরিচিত। ভর, ত্বরণ এবং বলের ন্যায় যেসব ধারণা এতে বিশদে আলোচনা করা হয়, সেগুলো সচরাচর বহুল ব্যবহৃত এবং অতি পরিচিত।[২] পদার্থবিজ্ঞানের এই শাখাটি প্রসঙ্গ কাঠামো নামক একটি নির্দিষ্ট অক্ষের সাপেক্ষে একটি ত্রি-মাত্রিক ইউক্লিডীয় স্থানভিত্তিক। একটি নির্দিষ্ট স্থানের নির্দেশক প্রসঙ্গ কাঠামোর অক্ষ তিনটি যে বিন্দুতে সমবিন্দুগামী বা মিলিত হয় সেই বিন্দুটি ঐ স্থানের উৎস নামে পরিচিত।[৩]
চিরায়ত বলবিদ্যায় অনেক সমীকরণের পাশাপাশি অন্যান্য গাণিতিক ধারণার প্রয়োগ করা হয়ে থাকে। এই সমীকরণ ও গাণিতিক ধারণাগুলো বিভিন্ন ভৌত রাশির মধ্যে পারস্পরিক সম্পর্ক গড়ে তোলে। এগুলোর মধ্যে রয়েছে ব্যবকলনীয় সমীকরণ, বহুভাঁজ, লী গ্রুপ এবং এরগডিক তত্ত্ব।[৪] এদের মধ্যে যেগুলো অত্যন্ত গুরুত্বপূর্ণ তাদের একটি সারসংক্ষেপ হচ্ছে এই নিবন্ধটি।
এই নিবন্ধে নিউটনীয় বলবিদ্যার সমীকরণসমূহ তালিকাভুক্ত করা হয়েছে। চিরায়ত বলবিদ্যার আরও সাধারণ গাঠনিক বিবরণের জন্য বিশ্লেষণী বলবিদ্যা দেখুন, যেখানে ল্যাগ্রাঞ্জীয় বলবিদ্যা এবং হ্যামিল্টনীয় বলবিদ্যাও অন্তর্ভুক্ত রয়েছে।
চিরায়ত বলবিদ্যা
ভর ও জড়তা
| রাশি (প্রচলিত নাম) | প্রতীক (প্রচলিত) | সংজ্ঞা নির্ধারক সমীকরণ | এসআই একক | মাত্রা |
|---|---|---|---|---|
| রৈখিক, তলীয়, আয়তনিক ভর ঘনত্ব | রৈখিক: λ অথবা μ তলীয়: σ আয়তনিক: ρ (λ মূলত শব্দবিজ্ঞানে ব্যবহার করা হয়) |
|
kg m−n, n = 1, 2, 3 | [M][L]−n |
| ভরের ভ্রামকটেমপ্লেট:Anchor[৫] | m (প্রচলিত কোনো প্রতীক নেই) | বিন্দু ভর:
অক্ষের সাথে জড়িত
বিচ্ছিন্ন ভর: অক্ষের সাথে জড়িত ভরের কন্টিনিউয়াম: |
kg m | [M][L] |
| ভরকেন্দ্র | rcom
(প্রতীকের পরিবর্তন ঘটতে পারে) |
ভরের ith-তম ভ্রামক:
বিচ্ছিন্ন ভর: ভর কন্টিনিউয়াম: |
m | [L] |
| ২-বস্তু ব্যবস্থার হ্রাসকৃত ভর | যুগল ভর: m12, m1 ও m2 দ্বিবস্তুুর তূল্য একক ভর: μ |
kg | [M] | |
| জড়তার ভ্রামক (MOI) | I | বিচ্ছিন্ন ভর:
ভর কন্টিনিউয়াম: |
kg m2 | [M][L]2 |
সৃতিবিদ্যার প্রতিপাদিত রাশিসমূহ

| রাশি (প্রচলিত নাম) | প্রতীক (প্রচলিত) | সংজ্ঞা নির্ধারক সমীকরণ | এসআই একক | মাত্রা |
|---|---|---|---|---|
| বেগ | v | m s−1 | [L][T]−1 | |
| ত্বরণ | a | m s−2 | [L][T]−2 | |
| জার্ক | j | m s−3 | [L][T]−3 | |
| জাউন্স | s | m s−4 | [L][T]−4 | |
| কৌণিক বেগ | ω | rad s−1 | [T]−1 | |
| কৌণিক ত্বরণ | α | rad s−2 | [T]−2 | |
| কৌণিক জার্ক | ζ | rad s−3 | [T]−3 |
গতিবিদ্যার প্রতিপাদিত রাশিসমূহ

বাম: অন্তর্নিহিত "স্পিন" কৌণিক ভরবেগ S হচ্ছে আদতে প্রতিটি বিন্দুতে বস্তুর অরবিটাল কৌণিক ভরবেগ,
ডান: একটি অক্ষ সংশ্লিষ্ট বহিস্থ অরবিটাল কৌণিক ভরবেগ L,
উপর: জড়তা টেন্সরের ভ্রামক I এবং কৌণিক বেগ ω (L সর্বদা ω-এর সমান্তরাল হয় না),[৬]
নিচ: p হচ্ছে ভরবেগ এবং r হচ্ছে অক্ষ থেকে এর ব্যাসার্ধীয় অবস্থান,
J হচ্ছে মোট কৌণিক ভরবেগ (স্পিন + অরবিটাল)।
| রাশি (প্রচলিত নাম) | প্রতীক (প্রচলিত) | সংজ্ঞা নির্ধারক সমীকরণ | এসআই একক | মাত্রা |
|---|---|---|---|---|
| ভরবেগ | p | kg m s−1 | [M][L][T]−1 | |
| বল | F | N = kg m s−2 | [M][L][T]−2 | |
| ঘাত | J, Δp, I | kg m s−1 | [M][L][T]−1 | |
| অবস্থান বিন্দু r0-এর চারদিকে কৌণিক ভরবেগ | L, J, S |
একটি সাধারণ বিন্দুতে ছেদ করে এমন অক্ষের চতুর্দিকে কণাগুলো প্রদক্ষিণ করলে অধিকাংশ ক্ষেত্রে r0 = 0 ধরা যায়। |
kg m2 s−1 | [M][L]2[T]−1 |
| অবস্থান বিন্দু r0-এর প্রযুক্ত বলের ভ্রামক, | τ, M | N m = kg m2 s−2 | [M][L]2[T]−2 | |
| কৌণিক ঘাত | ΔL (প্রচলিত কোনো প্রতীক নেই) | kg m2 s−1 | [M][L]2[T]−1 |
শক্তির সাধারণ সংজ্ঞা
| রাশি (প্রচলিত নাম) | প্রতীক (প্রচলিত) | সংজ্ঞা নির্ধারক সমীকরণ | এসআই একক | মাত্রা |
|---|---|---|---|---|
| লব্ধি বলের দরুন যান্ত্রিক কাজ | W | J = N m = kg m2 s−2 | [M][L]2[T]−2 | |
| যান্ত্রিক ব্যবস্থার ওপর কৃত কাজ (WON), এই কাজটি অপর যে কাজটি দিয়ে করা হয়েছে (WBY) |
WON, WBY | J = N m = kg m2 s−2 | [M][L]2[T]−2 | |
| বিভব শক্তি | φ, Φ, U, V, Ep | J = N m = kg m2 s−2 | [M][L]2[T]−2 | |
| যান্ত্রিক ক্ষমতা | P | W = J s−1 | [M][L]2[T]−3 |
প্রতিটি সংরক্ষণশীল বলের একটি বিভব শক্তি রয়েছে। দুটি নীতি অনুসরণ করে ধাপে ধাপে U-এর জন্য একটি অনাপেক্ষিক মান নির্ধারণ করা যায়:
- Wherever the force is zero, its potential energy is defined to be zero as well.
- Whenever the force does work, potential energy is lost.
সাধারণিকৃত বলবিদ্যা
| রাশি (প্রচলিত নাম) | প্রতীক (প্রচলিত) | সংজ্ঞা নির্ধারক সমীকরণ | এসআই একক | মাত্রা |
|---|---|---|---|---|
| সাধারণিকৃত স্থানাঙ্ক | q, Q | ইচ্ছামাফিক | ইচ্ছামাফিক | |
| সাধারণিকৃত বেগ | ইচ্ছামাফিক | ইচ্ছামাফিক | ||
| সাধারণিকৃত ভরবেগ | p, P | ইচ্ছামাফিক | ইচ্ছামাফিক | |
| ল্যাগ্রাঞ্জিয়ান | L |
যেখানে, এবং p = p(t) হচ্ছে সাধারণিকৃত স্থানাঙ্ক ও ভরবেগ ভেক্টর |
J | [M][L]2[T]−2 |
| হ্যামিল্টনিয়ান | H | J | [M][L]2[T]−2 | |
| ক্রিয়া, হ্যামিল্টনের মূল ফাংশন | S, | J s | [M][L]2[T]−1 |
সৃতিবিদ্যা
ঘূর্ণন সংশ্লিষ্ট নিম্নোক্ত রাশিগুলোর সংজ্ঞাগুলোতে বর্ণিত কোণগুলো নির্দিষ্ট ঘূর্ণন অক্ষের সাপেক্ষে যেকোনো কোণ হতে পারে। এর জন্য প্রথাগতভাবে θ ব্যবহার করা হয়। তবে, এটা যে পোলার স্থানাঙ্ক ব্যবস্থার মেরু কোণ নয়, সে বিষয়ে সতর্ক থাকতে হবে। ঘূর্ণন অক্ষকে একক অক্ষীয়-ভেক্টর দ্বারা সংজ্ঞায়িত করা হয়:
যেখানে, = r-এর অভিমুখ বরাবর একক ভেক্টর এবং = কোণের স্পর্শক বরাবর একক ভেক্টর।
| অনুবাদ | ঘূর্ণন | |
|---|---|---|
| বেগ | গড়:
তাৎক্ষণিক: |
কৌণিক বেগ
ঘূর্ণায়মান দৃঢ় বস্তু: |
| ত্বরণ | গড়:
তাৎক্ষণিক: |
কৌণিক ত্বরণ
ঘূর্ণায়মান দৃঢ় বস্তু: |
| জার্ক | গড়:
তাৎক্ষণিক: |
কৌণিক জার্ক
ঘূর্ণায়মান দৃঢ় বস্তু: |
গতিবিদ্যা
| অনুবাদ | ঘূর্ণন | |
|---|---|---|
| ভরবেগ | ভরবেগ হচ্ছে "অনুবাদের পরিমাণ"
ঘূর্ণায়মান দৃঢ় বস্তুর জন্য: |
কৌণিক ভরবেগ
কৌণিক ভরবেগ হচ্ছে "ঘূর্ণনের পরিমাণ": এখানে, ক্রস-গুণন হচ্ছে একটি ছদ্মভেক্টর। উদাহরণস্বরূপ, r এবং p উভয়ের দিক উল্টো (ঋণাত্মক) হয়ে গেলেও L দিক একই থাকবে। সাধারণত I ২য়-ক্রমের টেন্সর নয়, (উপরে এর উপাদান থেকে এটা দেখা যায়)। ডট চিহ্নটি (·) এখানে টেনসর সংকোচনকে নির্দেশ করছে। |
| বল ও নিউটনের ২য় সূত্র | সিস্টেমের ওপর প্রযুক্ত লব্ধি বল সিস্টেমটির ভরকেন্দ্রে ক্রিয়া করে। এই লব্ধি-বল ভরবেগের পরিবর্তনের হারের সমান:
একাধিক কণার ক্ষেত্রে, কোনো একটি কণা i-এর গতির সমীকরণ হলো:[৭] যেখানে, pi = i কণার ভরবেগ, Fij = j কণা কর্তৃক কণা i-এর ওপর প্রযুক্ত বল, এবং FE = বাহ্যিক লব্ধি বল (সিস্টেমের অংশ নয় এরূপ কোন উৎস থেকে আগত বল)। কণা i নিজেই নিজের ওপর কোনো বল প্রয়োগ করে না। |
টর্ক
টর্ক τ-কে বলের ভ্রামকও বলা হয়; কারণ হলো, ঘূর্ণায়মান ব্যবস্থায় টর্ক হচ্ছে বলের সাথে তুলনীয় একটি রাশি।:[৮] দৃঢ় বস্তুর ঘূর্ণন গতির ক্ষেত্রে নিউটনের দ্বিতীয় সূত্রটি অনুবাদের মতো একই আকার ধারণ করে: একইভাবে, একাধিক কণার ক্ষেত্রে, কোনো একটি কণা i-এর গতির সমীকরণ হলো:[৭] |
| ইয়াঙ্ক | ইয়াঙ্ক হচ্ছে বলের পরিবর্তনের হার:
ভর ধ্রুব হলে এটা হবে: |
রোটেটাম
রোটেটাম হলো টর্কের সময় অন্তরজ। এছাড়া, রোটেটাম Ρ-কে ইয়াঙ্কের ভ্রামকও বলা হয়। কারণ হলো, ঘূর্ণায়মান ব্যবস্থায় রোটেটাম হচ্ছে ইয়াঙ্কের সাথে তুলনীয় একটি রাশি: |
| ঘাত | ঘাত হলো ভরবেগের পরিবর্তন:
ধ্রুব বল F-এর ক্ষেত্রে: |
কৌণিক ঘাত হলো কৌণিক ভরবেগের পরিবর্তন:
ধ্রুব টর্ক τ-এর ক্ষেত্রে: |
অয়নচলন
লাটিম বা লাটিম-সদৃশ ঘূর্ণায়মান বস্তুর অয়নগতিজাত কৌণিক দ্রুতিকে নিম্নরূপভাবে লেখা যায়:
যেখানে, w হচ্ছে ঘূর্ণায়মান ফ্লাইহুইলের ওজন।
শক্তি
একটি বাহ্যিক উৎস কর্তৃক কোনো সিস্টেমের ওপর সম্পাদিত যান্ত্রিক কাজ সিস্টেমটির গতিশক্তির পরিবর্তনের সমান:
- সাধারণ কাজ-শক্তি উপপাদ্য (অনুবাদ ও ঘূর্ণন)
কোনো বস্তুর ওপর প্রযুক্ত বাহ্যিক বল F, বলের দিকে বস্তুর সরণ r এবং C বক্র পথ বরাবর প্রযুক্ত টর্ক τ হলে, ঐ বলের দরুন কৃত কাজ W হবে:
যেখানে, θ হলো n একক ভেক্টর দিয়ে সংজ্ঞায়িত কোনো একটি অক্ষের সাপেক্ষে ঘূর্ণন কোণ।
এক প্রান্ত আবদ্ধ রয়েছে এমন একটি স্প্রিংকে প্রসারিত করলে হুকের সূত্রানুসারে স্প্রিংটির সঞ্চিত স্থিতিস্থাপক বিভব শক্তি:
যেখানে, r2 এবং r1 হচ্ছে স্প্রিংটির প্রসারণ /সঙ্কোচনের দিকে এর মুক্ত প্রান্তের সমরৈখিক স্থানাঙ্ক, এবং k হচ্ছে স্প্রিং ধ্রুবক।
দৃঢ় বস্তুর গতিবিদ্যার জন্য অয়লারের সমীকরণ
টেমপ্লেট:মূল গণিতবিদ অয়লারও নিউটনের অনুরূপ গতি-সূত্র নিয়ে কাজ করেছেন (অয়লারের গতিসূত্র দেখুন)। অয়লারের এই কাজগুলো দৃঢ় বস্তুসমূহে নিউটনের সূত্রগুলোর সুবিধা বৃদ্ধি করলেও এগুলো মূলত উপরের সূত্রগুলোর মতোই। অয়লার প্রণীত একটি নতুন সমীকরণ হলো:[৭]
যেখানে, I হচ্ছে জড়তার ভ্রামক টেন্সর।
সাধারণ সমতলীয় গতি
সমতলীয় গতির জন্য আলোচিত পূর্ববর্তী সমীকরণগুলোকে এখানে ব্যবহার করা যেতে পারে: ভরবেগ, কৌণিক ভরবেগ ইত্যাদির অনুসিদ্ধান্তসমূহ তাৎক্ষণিকভাবে ওপরের সংজ্ঞাগুলোর প্রয়োগের অনুগামী হতে পারে। সমতলের ওপর যেকোনো পথে () ভ্রমণশীল যেকোনো বস্তুর (কণার) ক্ষেত্রে, নিচের সাধারণ ফলাফলসমূহ কণার ওপর প্রযুক্ত হয় বা কাজ করে।
| সৃতিবিদ্যা | গতিবিদ্যা |
|---|---|
| অবস্থান
|
|
| বেগ
|
ভরবেগ
কৌণিক ভরবেগ |
| ত্বরণ
|
কেন্দ্রমুখী বল হচ্ছে
যেখানে, আবার m হচ্ছে ভর ভ্রামক (ভরের ভ্রামক নয় কিন্তু) অর্থাৎ জড়তার ভ্রামক এবং কোরিওলিস বল হচ্ছে, এছাড়া কোরিওলিস ত্বরণ ও বলকে লেখা যেতে পারে: |
কেন্দ্রীয় বলের দরুন গতি
যে কেন্দ্রীয় বিভব দুটি বস্তুর ভরকেন্দ্রদ্বয়ের মধ্যকার ব্যাসার্ধীয় পার্থক্যের ওপর নির্ভর করে, সেই কেন্দ্রীয় বিভবের মধ্যে চলমান কোনো ভারী বস্তুর ক্ষেত্রে গতির সমীকরণ হলো:
ধ্রুব ত্বরণের অধীনে গতির সমীকরণ
টেমপ্লেট:মূল ত্বরণ স্থির বা ধ্রুব থাকলেই কেবল এই সমীকরণগুলো ব্যবহার করা যাবে। যদি ত্বরণ ধ্রুব না হয় তবে উপরের সাধারণ ক্যালকুলাসের সমীকরণগুলো ব্যবহার করতে হবে, যেগুলো অবস্থান, বেগ এবং ত্বরণের সংজ্ঞার সমাকলনের মাধ্যমে প্রতিষ্ঠিত (উপরে দেখুন)।
| রৈখিক গতি | কৌণিক গতি |
|---|---|
গ্যালিলীও কাঠামোর রূপান্তর
টেমপ্লেট:মূল চিরায়ত (নিউটনীয়-গ্যালিলীও) বলবিদ্যায়, জড়তা-সম্পন্ন বা ত্বরণযুক্ত (ঘূর্ণনও বিদ্যমান থাকতে পারে) একটি প্রসঙ্গ-কাঠামো, যা স্থির রয়েছে (বেগ শূন্য) অথবা অন্য কোনো ধ্রুব বেগে ভ্রমণশীল রয়েছে, তাকে (কাঠামোটিকে) অন্য একটি কাঠামোয় রূপান্তরের নিয়মই হচ্ছে গ্যালিলীও রূপান্তর।
প্রাইম চিহ্নহীন রাশিগুলো F প্রসঙ্গ কাঠামোয় অবস্থান, বেগ এবং ত্বরণকে নির্দেশ করছে এবং প্রাইম চিহ্নযুক্ত রাশিগুলো অন্য একটি কাঠামো F'-এ অবস্থান, বেগ এবং ত্বরণকে নির্দেশ করছে, যেখানে এই কাঠামোটি F কাঠামোর সাপেক্ষ V অনুবাদী বেগে অথবা Ω কৌণিক বেগে ভ্রমণ করছে। বিপরীতভাবে বলা যায়, F কাঠামোটি F'-এর সাপেক্ষে —V অথবা —Ω বেগে ভ্রমণ করছে। উদ্ভূত পরিস্থিতিটি আপেক্ষিক ত্বরণের ক্ষেত্রেও একই।
| সত্তাসমূহের গতি | জড়তা-সম্পন্ন কাঠামো | ত্বরণযুক্ত কাঠামো |
|---|---|---|
| অনুবাদ
V = জড়তা-সম্পন্ন F এবং F' কাঠামোদ্বয়ের মধ্যকার ধ্রুব আপেক্ষিক বেগ |
আপেক্ষিক অবস্থান আপেক্ষিক বেগ |
আপেক্ষিক ত্বরণ আপাত/কাল্পনিক বল |
| ঘূর্ণন
Ω = F এবং F' কাঠামোদ্বয়ের মধ্যকার ধ্রুব আপেক্ষিক কৌণিক বেগ |
আপেক্ষিক কৌণিক অবস্থান আপেক্ষিক কৌণিক বেগ |
আপেক্ষিক কৌণিক ত্বরণ আপাত/কাল্পনিক টর্ক |
| যেকোনো ভেক্টর T-এর নিম্নোক্ত ঘূর্ণায়মান কাঠামোয় রূপান্তর:
| ||
যান্ত্রিক স্পন্দক
এখানে সরল ছন্দিত গতি, দমিত ছন্দিত গতি, সরল ছন্দিত স্পন্দক এবং দমিত ছন্দিত স্পন্দককে যথাক্রমে SHM, DHM, SHO এবং DHO দ্বারা নির্দেশ করা হয়েছে।
| ভৌত অবস্থা | নামকরণ | অনুবাদী সমীকরণ | কৌণিক সমীকরণ |
|---|---|---|---|
| SHM |
|
সমাধান: |
সমাধান: |
| স্বাভাবিক (unforced) DHM |
|
সমাধান (ω'-এর জন্য নিচে দেখুন): অনুনাদী কম্পাঙ্ক: দমন বা ড্যাম্পিংয়ের হার: উত্তেজনার প্রত্যাশিত আয়ুষ্কাল: |
সমাধান: অনুনাদী কম্পাঙ্ক: ড্যাম্পিংয়ের হার: উত্তেজনার প্রত্যাশিত আয়ুষ্কাল: |
| ভৌত অবস্থা | নামকরণ | সমীকরণ |
|---|---|---|
| রৈখিক অদমিত স্বাভাবিক SHO |
|
|
| রৈখিক স্বাভাবিক DHO |
|
|
| ক্ষুদ্র বিস্তারের কৌণিক SHO |
|
|
| ক্ষুদ্র বিস্তারের সরল দোলক |
|
আসন্ন মান
প্রকৃত মান নিম্নরূপ হবে দেখানো যেতে পারে: |
| ভৌত অবস্থা | নামকরণ | সমীকরণ |
|---|---|---|
| SHM শক্তি |
|
বিভবশক্তি
x = A-তে সর্বোচ্চ মান: গতিশক্তি মোট শক্তি |
| DHM শক্তি |
তথ্যসূত্র
- ↑ টেমপ্লেট:Harvnb
- ↑ টেমপ্লেট:Harvnb
- ↑ টেমপ্লেট:Harvnb
- ↑ টেমপ্লেট:Harvnb
- ↑ টেমপ্লেট:ওয়েব উদ্ধৃতিটেমপ্লেট:অকার্যকর সংযোগ
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ ৭.০ ৭.১ ৭.২ "Relativity, J.R. Forshaw 2009"
- ↑ "Mechanics, D. Kleppner 2010"