গাণিতিক বিশ্লেষণ
গাণিতিক বিশ্লেষণ (টেমপ্লেট:Lang-en) গণিতের একটি শাখা যেখানে বাস্তব ও জটিল মানের ফাংশনের নিয়মানুগ অধ্যয়ন করা হয়। সাধারণত এই ফাংশনগুলি নিয়মবর্হিভূত হয় না, অবিচ্ছিন্ন(ইংরেজি :Continuous) কিংবা অন্তরকলনীয়(ইংরেজি :Differentiable) কিংবা বৈশ্লষিক (ইংরেজি :Analytic) হয়ে থাকে। অন্তরকলন তত্ত্ব, সমাকলন তত্ত্ব, পরিমাপ তত্ত্ব (ইংরেজি: Measure Theory), সীমা(ইংরেজি: Limit), অভিসৃতি(ইংরেজি: Convergence) এবং বৈশ্লেষিক ফাংশন গাণিতিক বিশ্লেষণের অন্তর্গত।[১]
গনিতের নতুন সূত্র _______ ক্রমবর্ধমান বিজোড় সংখ্যার সমষ্টি ={(n+1)÷2}এর বর্গো হবে যেখানে n হল শেষ সংখ্যা। এর আর একটি সূত্র হল totale সংখ্যার বর্গো হবে।। exaample--- ১+৩+৫+৭+৯ = ৫×৫।
ইতিহাস

যদিও আধুনিক গাণিতিক বিশ্লেষণ সপ্তদশ শতাব্দীতে বৈজ্ঞানিক বিপ্লবের সমকালীন শুরু হয়,[২] প্রাচীন গ্রিক গণিতবিদ্দের কাজেও বিশ্লেষণের ছাপ লক্ষ্য করা যায়। ইয়ডোক্সাস এবং আর্কিমিডিস নিঃশেষণ পদ্ধতির (ইংরেজি: Method of Exhaustion) দ্বারা বৃত্তের ক্ষেত্রফল নির্ণয় করার জন্য সীমা এবং অভিসৃতির ধারণা ব্যবহার করেছিলেন।[৩] ভারতীয় গণিতবিদ্ ভাস্কর (দ্বিতীয়) দ্বাদশ শতাব্দীতে অন্তরকলজের(ইংরেজি: Derivative) উদাহরণ দিয়েছিলেন এবং অধুনা পরিচিত রোলের উপপাদ্য ব্যবহার করেছিলেন।[৪] ভারতীয় গণিতবিদ্ মাধব চতুর্দশ শতাব্দীতে ফাংশনের অনন্ত ধারা সম্প্রসারণ (যেমন টেইলর ধারা) করেছিলেন। উনি সাইন, কোসাইন এবং ট্যানজেন্ট ফাংশনের টেইলর ধারা নির্ধারণ করেছিলেন।[৫]
আধুনিক গাণিতিক বিশ্লেষণ সপ্তদশ শতাব্দীতে ইউরোপে শুরু হয়। নিউটন ও লাইব্নিত্স্ স্বাধীন ভাবে ক্ষুদ্রাতিক্ষুদ্র কলন (ইংরেজি:Infinitesimal Calculus) আবিষ্কার করেন। অষ্টদশ শতাব্দীতে সাধারণ এবং আংশিক অবকলন সমীকরণ, ফুরিয়ে বিশ্লেষণ এবং উৎপাদন ফাংশন(ইংরেজি: Generating Function) ইত্যাদির বিশ্লেষণের বিভিন্ন শাখা হিসাবে সৃষ্টি হয় ।
অষ্টদশ শতাব্দীতে অয়লার ফাংশনের ধারণার প্রবর্তন করেন।[৬] বোলজানো’র অবিচ্ছিন্নতার আধুনিক সংজ্ঞার প্রচলনের পর থেকে বাস্তব বিশ্লেষণও একটি স্বাধীন বিষয় হিসাবে গণ্য হয়।[৭] ১৮২১ সালে কোশি প্রথম কলনবিদ্যার যৌক্তিক ভিত্তি স্থাপনে নজর দেন। উনি জ্যামিতিক ধারণা এবং ক্ষুদ্রাতিক্ষুদ্রের ওপর কলনবিদ্যার স্থাপন করেন। এছাড়াও তিনি কোশি সারির সংজ্ঞা দেন এবং জটিল বিশ্লেষণের তত্ত্ব শুরু করেন।
পোঁআসোঁ, লিউভিল্, ফুরিয়ে এবং অন্যান্যরা আংশিক অবকলন সমীকরণ এবং হারমোনিক বিশ্লেষেণর অধ্যয়ন আরম্ভ করলেন। এইসব গণিতবিদদের অবদানের, এবং অন্যান্যদের যেমন ওয়াইর্স্ত্রস্, ফলস্বরূপ সীমার (ε, δ)- সংজ্ঞার উদ্ভাবন হয়। এই সংজ্ঞার দ্বারা বিশ্লেষণে জ্যামিতিক ধারনার কারণে তৈরি হওয়া বিভ্রান্তি দূর হয়। এইভাবে আধুনিক গাণিতিক বিশ্লেষণের পত্তন হয়।
গুরুত্বপূর্ণ কিছু ধারণা
মেট্রিক জগত
গণিতে মেট্রিক জগৎ এমন একটি সেট যেখানে দূরত্বের একটি নির্দিষ্ট ধারণা উপস্থিত আছে। বেশিরভাগ বিশ্লেষণ কোন না কোন মেট্রিক জগতে হয়ে থাকে; যেমন - বাস্তব সংখ্যা রেখা, জটিল সমতল, ইউক্লিডীয় জগত, অন্যান্য ভেক্টর জগত এবং পুর্ণ সংখ্যা। মেট্রিক জগৎ হল এমন এক ক্রমান্বিত জোড়া যেখানে একটা সেট আর হল এর ওপর একটা মেট্রিক, অর্থাত, একটা ফাংশন
যাতে যেকোনো এর জন্য নিম্নলিখিত শর্তাবলী সত্যি হয়:
- (অঋণাত্বক),
- ,
- (প্রতিসাম্য) এবং
- (ত্রিভূজ অসমতা) .
সারি এবং সীমা
সারি(ইংরেজি: Sequence) হল একটি ক্রমান্বিত সূচি। সেটের মত সারিরও সদস্য থাকে, কিন্তু যেখানে একটি সেটে তার সদস্যদের ক্রম গুরুত্বহীন, সেখানে সারির ক্ষেত্রে সদস্যদের ক্রম গুরুত্বপূর্ণ। তাছারাও একটি সদস্য একই সারিতে বারংবার (বিভিন্ন স্থানে) আসতে পারে, কিন্তু সেটের ক্ষেত্রে সেটা অসম্ভব। বিশেষ করে, একটি সারি হল একটা ফাংশন যার ডোমেইন হল স্বাভাবিক সংখ্যা।
একটি সারির অত্যন্ত গুরুত্বপূর্ণ একটি বৈশিষ্ট্য হল অভিসৃতি। কথার কথায় বলা যায় একটি সারির কোন নির্দিষ্ট সীমা থাকলে তার অভিসৃতি প্রতিষ্ঠিত হয় অর্থাৎ একটি সারি (an) যেখানে ( n এর মান ১ থেকে ∞) an এবং x এর দূরত্ব শুন্যর নিকটে যেতে থাকে যখন n → ∞, এর গাণিতিক রূপ হল
টীকাসমূহ
তথ্যসূত্র
- Aleksandrov, A. D., Kolmogorov, A. N., Lavrent'ev, M. A. (eds.). 1984. Mathematics, its Content, Methods, and Meaning. 2nd ed. Translated by S. H. Gould, K. A. Hirsch and T. Bartha; translation edited by S. H. Gould. MIT Press; published in cooperation with the American Mathematical Society.
- Apostol, Tom M. 1974. Mathematical Analysis. 2nd ed. Addison–Wesley. টেমপ্লেট:আইএসবিএন.
- Binmore, K.G. 1980–1981. The foundations of analysis: a straightforward introduction. 2 volumes. Cambridge University Press.
- Johnsonbaugh, Richard, & W. E. Pfaffenberger. 1981. Foundations of mathematical analysis. New York: M. Dekker.
- Nikol'skii, S. M. 2002. "Mathematical analysis". In Encyclopaedia of Mathematics, Michiel Hazewinkel (editor). Springer-Verlag. টেমপ্লেট:আইএসবিএন.
- Rombaldi, Jean-Étienne. 2004. Éléments d'analyse réelle : CAPES et agrégation interne de mathématiques. EDP Sciences. টেমপ্লেট:আইএসবিএন.
- Rudin, Walter. 1976. Principles of Mathematical Analysis. McGraw–Hill Publishing Co.; 3rd revised edition (September 1, 1976), টেমপ্লেট:আইএসবিএন.
- Smith, David E. 1958. History of Mathematics. Dover Publications.
আরও পড়ুন
- টেমপ্লেট:Anchorটেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বিশ্বকোষ উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি
- টেমপ্লেট:বই উদ্ধৃতি (vi+608 pages) (reprinted: 1935, 1940, 1946, 1950, 1952, 1958, 1962, 1963, 1992)
- টেমপ্লেট:ওয়েব উদ্ধৃতিটেমপ্লেট:আইএসবিএন.
বহিঃসংযোগ
টেমপ্লেট:Wikiquote টেমপ্লেট:কমন্স বিষয়শ্রেণী
- Earliest Known Uses of Some of the Words of Mathematics: Calculus & Analysis
- Basic Analysis: Introduction to Real Analysis by Jiri Lebl (Creative Commons BY-NC-SA)
- Mathematical Analysis – Encyclopædia Britannica
- Calculus and Analysis
- ↑ এডউইন হেউইট এবং কার্ল স্ট্রমবার্গ, "Real and Abstract Analysis", Springer-Verlag, ১৯৬৫
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ (Smith, 1958)
- ↑ টেমপ্লেট:Citation
- ↑ টেমপ্লেট:সাময়িকী উদ্ধৃতিটেমপ্লেট:অকার্যকর সংযোগ
- ↑ টেমপ্লেট:বই উদ্ধৃতি
- ↑ *টেমপ্লেট:বই উদ্ধৃতি