গৌণিক

testwiki থেকে
পরিভ্রমণে চলুন অনুসন্ধানে চলুন

একটি সংখ্যার গৌণিক বা ফ্যাক্টরিয়াল (টেমপ্লেট:Lang-en, টেমপ্লেট:IPA) হল সংখ্যাটির সমান বা তার থেকে ছোট সকল ধনাত্মক পূর্ণসংখ্যার গুণফল। টেমপ্লেট:Mvar-এর গৌণিককে টেমপ্লেট:Math বা টেমপ্লেট:Math[][] দ্বারা প্রকাশ করা হয়। সুতরাং, টেমপ্লেট:Nowrap
উদাহরণস্বরূপ, টেমপ্লেট:Nowrap

০ (শূন্য)-এর গৌণিককে ১ ধরা হয়ে থাকে।[]

গৌণিক গণিতের বিভিন্ন ক্ষেত্রে ব্যবহৃত হয়, বিশেষ করে গুচ্ছ-বিন্যাসতত্ত্ব, বীজগণিত, গাণিতিক বিশ্লেষণেn সংখ্যক ভিন্ন ভিন্ন বস্তুকে সাজানো যায় n! উপায়ে; এ বিষয়ে প্রাচীন ভারতীয় পণ্ডিতদেরও ধারণা ছিল।[] "n!" চিহ্নটি ১৮০৮ সালে ক্রিশ্চিয়ান ক্র্যাম্প প্রথম প্রচলন করেন।[]

ধনাত্মক পূর্ণ সংখ্যার বাইরেও গৌণিককে সংজ্ঞায়িত করা সম্ভব।

সংজ্ঞা

স্বাভাবিক সংখ্যা

গাণিতিক ভাষায় গৌণিকের সংজ্ঞা হলো:

n!=k=1nk =n×(n1)×(n2)×(n3)×.........×3×2×1  ; যেখানে nk স্বাভাবিক সংখ্যা

বা পুনরাবৃত্ত সম্পর্কের মাধ্যমে:

n!={1if n=0,(n1)!×nif n>0.

0!

উপরের উভয় সংজ্ঞাতেই ধরে নেয়া হয়:

0!=1. 

এটাই যুক্তিযুক্ত, কেননা ০ সংখ্যক বস্তুকে মাত্র ১ ভাবেই সাজানো যায়। এছাড়া n = 0 ধরলে পুনরাবৃত্ত সম্পর্কটিও সঠিক থাকে।

অন্যান্য

বাস্তব মানের জন্য (ঋণাত্মক পূর্ণ সংখ্যা ব্যতীত) গৌণিক ফাংশনের লেখচিত্র।
যেমন, (0.5)!=π/2

ধনাত্মক পূর্ণ সংখ্যার বাইরে গৌণিককে সংজ্ঞায়িত করতে গামা ফাংশন (Γ(x)) ব্যবহার করা হয়, যেখানে

n!=Γ(n+1)=0tnetdt

এ সংজ্ঞা ব্যবহার করে গৌণিককে এমনকি জটিল সংখ্যা পর্যন্তও সম্প্রসারিত করা যায়।

ঋণাত্মক পূর্ণ সংখ্যায় গৌণিক সংজ্ঞায়িত নয়। বিষয়টি পুনরাবৃত্ত সম্পর্কের মাধ্যমে ব্যাখ্যা করা যায়:

(n1)!=n!n;

সুতরাং (−1)! -এর মান বের করতে হলে 0! (=1) -কে 0 দ্বারা ভাগ করতে হবে, যা অসংজ্ঞায়িত। এর ফলশ্রুতিতে অন্যান্য ঋণাত্মক পূর্ণ সংখ্যার জন্যও গৌণিক অসংজ্ঞায়িত হয়ে পড়ে।(ডানের লেখচিত্রটি লক্ষ্য করা যেতে পারে।)

প্রয়োগ

ইউলারতত্ত্বের পত্র

উৎপত্তিগতভাবে গৌণিক মূলত গুচ্ছ-বিন্যাসতত্ত্বের সাথে সম্পর্কিত হলেও গণিতের বিভিন্ন শাখায়ই এর উপস্থিতি লক্ষ্য করা যায়।

  • n সংখ্যক স্বতন্ত্র বস্তুকে n! সংখ্যক উপায়ে নিজেদের মধ্যে সাজানো যায়, যাকে ঐ বস্তুগুলোর বিন্যাস সংখ্যা বলে।[][]
  • গৌণিক প্রায়শই বিভিন্ন সূত্রের ভগ্নাংশের হরের মধ্যে উপস্থিত থাকে, যা কিনা এটাই নির্দেশ করে যে এতে সংশ্লিষ্ট বস্তুগুলোর সজ্জাকে উপেক্ষা করা হয়েছে। একটি ভাল উদাহরণ হলো n সংখ্যক বস্তুর একটি সেট থেকে k সংখ্যক বস্তুর সমাবেশের (k সংখ্যক উপাদানের উপসেট, যাকে k-সমাবেশ নামে অভিহিত করা হল) সংখ্যা গণনা করা। প্রথমে উক্ত সেট থেকে k সংখ্যক উপাদান (ক্রমান্বয়ে একটির পর আরেকটি) নিয়ে একটি সমাবেশ তৈরি করা যায় (এমন সমাবেশে উপাদানগুলো নির্দিষ্ট সজ্জায় বিন্যস্ত থাকে, যাকে k-বিন্যাস নামে অভিহিত করা হল)। সেটটি থেকে এমন k-বিন্যাস সর্বমোট—
nk_=n(n1)(n2)(nk+1)
সংখ্যক উপায়ে বাছাই করা যায়। এভাবে যে সমাবেশগুলো (তথা k-বিন্যাস) পাওয়া যায় সেগুলোতে উপাদানসমূহ নির্দিষ্ট বিন্যাসে সজ্জিত থাকে, যা উপেক্ষা করা প্রয়োজন। যেহেতু এরূপ প্রত্যেক সমাবেশ k! সংখ্যক বিভিন্ন উপায়ে নিজেদের মধ্যে বিন্যস্ত করা যায়, সেহেতু k-সমাবেশের মোট সংখ্যা (k-বিন্যাসের সর্বমোট সংখ্যাকে k! দ্বারা ভাগ করলে পাওয়া যায়):
nk_k!=n(n1)(n2)(nk+1)k(k1)(k2)(1)
এই সংখ্যাটি দ্বিপদী সহগ (nk) নামে পরিচিত, কারণ এটি টেমপ্লেট:Nowrap -এর দ্বিপদী ধারায় xk -এর সহগ।[]
  • বীজগণিতে গৌণিক বিভিন্ন কারণে উপস্থিত থাকতে পারে, যেমন দ্বিপদী ধারার উপরোর্ল্লিখিত সহগের মধ্যে অথবা নির্দিষ্ট কিছু বীজগাণিতিক অপারেশনের প্রতিসাম্য আনয়নের জন্য গড় বিন্যস্তকরণের মাধ্যমে।
  • ক্যালকুলাসেও গৌণিক পাওয়া যায়; উদাহরণস্বরূপ, টেলরের ধারার পদগুলোর হরে গৌণিক উপস্থিত থাকে।[] n! -কে এখানে xn-এর n-তম ব্যবকলনের (n!) ক্ষতিপূরণ হিসেবে চিন্তা করা যেতে পারে।
  • সম্ভাব্যতা তত্ত্বে গৌণিক ব্যাপকভাবে ব্যবহৃত হয়।।[১০]
  • কিছু রাশিকে সুবিধাজনকভাবে প্রকাশ করার জন্য গৌণিক বেশ কাজে দেয়। উদাহরণস্বরূপ, n -এর k-সমাবেশ সংখ্যাকে গৌণিকের মাধ্যমে নিম্নোক্তরূপে সংক্ষিপ্ত আকারে লেখা যায়:
nk_=n!(nk)!;
সংখ্যাটির মান বের করার জন্য এটি অকার্যকর হলেও দ্বিপদী সহগের প্রতিসাম্য ধর্ম প্রমাণ করার জন্য বেশ যুৎসই:[][]
(nk)=nk_k!=n!(nk)!k!=nnk_(nk)!=(nnk)
  • ক্যালকুলাসের ঘাত নিয়ম ব্যবহার করে গৌণিককে নিম্নরূপে দেখানো যেতে পারে:
n!=Dn(xn)=dndxn(xn)
যেখানে Dnxn হলো xn -এর n-তম ব্যবকলনের অয়লার প্রতীক[১১]
মান গণনা ==

যদি গণনদক্ষতা উদ্বেগের বিষয় না হয় তবে অ্যালগরিদমীয় দৃষ্টিকোণ থেকে দেখলে গৌণিকের মান গণনা করা মামুলি একটি বিষয়: ধারাবাহিকভাবে একটি চলককে ১ থেকে শুরু করে পূর্ণ সংখ্যা n পর্যন্ত গুণ করে (পুনরাবৃত্ত সম্পর্কের মাধ্যমে) n! নির্ণয় করা (যদি উক্ত চলক কর্তৃক ফলাফলটি ধারণের উপযোগী হয়)।

গৌণিকের মান গণনায় ফলাফলটির আকারই প্রধান প্রায়োগিক সমস্যা। গণনা যন্ত্রে সচরাচর ব্যবহৃত হয় এমন সংখ্যার ধরন, এমনকি সর্বনিম্ন পূর্ণসাংখ্যিক ধরনের (৮-বিট বিশিষ্ট সচিহ্ন পূর্ণসংখ্যা) সমস্ত বিধিসম্মত মানের জন্যও প্রকৃত ফলাফলটি মাপসই হবে কিনা তা নিশ্চিত করতেও ৭০০ বিটের বেশি প্রয়োজন হবে। তাই স্থির বিন্দু সংখ্যার ধরন ব্যবহার করে গৌণিক ফাংশনের কোন যুক্তিসঙ্গত বিবরণই যন্ত্রের ধারণক্ষমতা অতিক্রমের প্রশ্নটি এড়াতে পারে না। সচরাচর ব্যবহৃত ৩২-বিট এবং ৬৪-বিটের ব্যক্তিগত কম্পিউটারে যথাক্রমে সর্বোচ্চ ১২! এবং ২০! পর্যন্ত সংরক্ষণ করা যায়; তবে অনেক কম্পিউটার ভাষাই চলক দৈর্ঘ্যের পূর্ণসাংখ্যিক ধরন সমর্থন করে যা কিনা অনেক বড় মান গণনা করতে সক্ষম।[১২] আসন্নমানের ভাসমান বিন্দু উপস্থাপনা আরও কিছুদূর পর্যন্ত যেতে পারে, কিন্তু তাও ধারণক্ষমতার সম্ভাব্য অতিক্রমের বিষয়টি দ্বারা সীমাবদ্ধ। বেশিরভাগ ক্যালকুলেটর বৈজ্ঞানিক নোটেশন (যেখানে ঘাত ২ অঙ্কের দশমিক সংখ্যা) ব্যবহার করে; ফলে সর্ববৃহৎ যে গৌণিকটি ধারণ করা সম্ভব তা হল ৬৯!, কেননা ৬৯!<১০১০০<৭০!। অন্যান্য অ্যাপ্লিকেশন (যেমন, স্প্রেডশীট প্রোগ্রাম জাতীয় কম্পিউটার সফটওয়্যার) প্রায়শই আরও বড় মান নিয়ে কাজ করতে পারে।

বেশিরভাগ সফটওয়্যার অ্যাপ্লিকেশন সরাসরি গুণন বা সারণি ব্যবহারের মাধ্যমে ছোট গৌণিকগুলো গণনা করে। স্টার্লিংয়ের সূত্র ব্যবহার করে বড় গৌণিকের আসন্নমান নির্ণয় করা যায়। বড় গৌণিকগুলোর সঠিক মানের প্রয়োজন হলে সেগুলো ইচ্ছামূলক-নির্ভুল মানের পাটিগণিত ব্যবহার করে গণনা করা যায়। ধারাবাহিক গুণন ((1×2)×3)×4× -এর পরিবর্তে একটি প্রোগ্রামের মাধ্যমে গৌণিকটিকে দুটি অংশে বিভক্ত করা যায় যেগুলোতে উপাদানগুলোর গুণফল কাছাকাছি মানের হয় এবং পরে অংশদুটিকে পুনরায় গুণ করা হয় (পদ্ধতিটি ‘বিভেদ ও বিজয়’ পদ্ধতি নামে পরিচিত)। এটি অনেক ক্ষেত্রেই বেশি কার্যকরী হয়।[১৩]

মৌলিক উৎপাদকে বিশ্লেষণের মাধ্যমে n! –এর মান গণনা করলে অসীমতটীয়ভাবে সর্বোত্তম কার্যকারিতা পাওয়া যায়। পিটার বরভীনের মোতাবেক যদি দ্রুতগুণন অ্যালগরিদম (যেমন, শোনহাগে-স্ট্রাসেন অ্যালগরিদম) ব্যবহার করা হয় তবে এ পদ্ধতিতে O(n(log n log log n)2) সময়ের মধ্যে n! –এর মান গণনা করা যেতে পারে। পিটার লুশনি বেশ কিছু কার্যকর গৌণিক অ্যালগরিদমের উৎস কোড এবং মানদণ্ড প্রদান করেছেন।[১৪]

বৈশিষ্ট্যসমূহ

সংখ্যাতত্ত্বে গৌণিক

সংখ্যাতত্ত্বে গৌণিকের অনেক ব্যবহার রয়েছে। যেমন, n ও তার ছোট সকল মৌলিক সংখ্যা দ্বারা n! বিভাজ্য। ফলশ্রুতিতে, n > 5 একটি যৌগিক সংখ্যা হবে যদি ও শুধুমাত্র যদি

(n1)!  0(modn) হয়।

এর থেকেও অধিকতর জোরাল ফলাফল হল উইলসনের উপপাদ্য। এ উপপাদ্য অনুসারে

(p1)!  1(modp)

সত্য হবে যদি ও শুধুমাত্র যদি p মৌলিক হয়।[১৫][১৬]

লেজেন্ডারের সূত্র অনুসারে, n! -কে মৌলিক উৎপাদকে বিশ্লেষণ করলে তাতে p মৌলিকটি নিম্নোক্ত সংখ্যক বার উপস্থিত থাকে:[১৭][১৮]

i=1npi

বা সমতুল্যভাবে:

nsp(n)p1,

যেখানে sp(n) n-কে p-ভিত্তিক সংখ্যায় রূপান্তর করলে তাতে উপস্থিত অঙ্কসমূহের যোগফল নির্দেশ করে।[১৮]

ব্রাউন সংখ্যা হল এমন পূর্ণ সংখ্যা জোড় (m,n), যা নিম্নলখিত ব্রোকার্ডের সমস্যাকে সিদ্ধ করে:

n!+1=m2;

এখন পর্যন্ত মাত্র তিনটি এমন জোড়ের সন্ধান পাওয়া গেছে: (5, 4), (11, 5) ও (71, 7)। এর্ডশের মতে এরকম সম্ভাব্য জোড় এই তিনটিই।[১৯]

n! এর সাথে ১ যোগ করলে যে সংখ্যাটি পাওয়া যায় তা শুধুমাত্র n-এর চেয়ে বড় মৌলিক সংখ্যা দ্বারাই বিভাজ্য হতে পারে। এই ব্যাপারটি মৌলিক সংখ্যার অসীমত্ব প্রমাণ করতে ব্যবহার করা যায় (ইউক্লিডের উপপাদ্য)।[২০] n! ± 1 আকারের মৌলিক সংখ্যাকে গৌণিক মৌলিক বলে।

বিপরীতকের ধারা

গৌণিকের বিপরীতকসমূহ একটি অভিসারী ধারা তৈরি করে, যার যোগফল অয়লারের সংখ্যা e -এর সমান:

n=01n!=11+11+12+16+124+1120+=e.

যদিও ধারাটির যোগফল একটি অমূলদ সংখ্যা, গৌণিকগুলোকে ধনাত্মক সংখ্যা দ্বারা গুণ করে একটি অভিসারী ধারা তৈরি করলে তার যোগফল মূলদও হতে পারে, যেমন:[২১]

n=01(n+2)n!=12+13+18+130+1144+=1.

বৃদ্ধির হার ও n-এর বৃহৎ মানের জন্য n! -এর আসন্নমান

প্রাকৃতিক লগারিদমের লেখচিত্র।
লাল লেখ: lnx (নিচে), ln(x+1) (উপরে) এবং
ছায়াময় এলাকা: x=1nlnx

n -এর সাথে সাথে n! -এর মান যেকোন বহুপদী বা সূচক ফাংশনের চেয়েও দ্রুত বাড়তে থাকে।

n! -এর আসন্নমান বেশিরভাগ ক্ষেত্রে এর প্রাকৃতিক লগারিদমের আসন্নমানের উপর ভিত্তি করে নির্ণয় করা হয়:

lnn!=x=1nlnx

সমাকলনের মাধ্যমে লেখের ক্ষেত্রফল নির্ণয়ের ধারণা ব্যবহার করে দেখানো যায় যে (ডানের চিত্র দেখুন):

1nlnxdxx=1nlnx0nln(x+1)dx ;

যা থেকে পাওয়া যায়-

nln(ne)+1lnn!(n+1)ln(n+1e)+1

সুতরাং, lnn!nlnn। এখান থেকে আমরা পাই-

(ne)nen!(n+1e)n+1e

ব্যবহারিক উদ্দেশ্যে তুলনামূলক সরল (কিন্তু দুর্বল) আসন্নমান ব্যবহার করা যুক্তিযুক্ত। উপরের সূত্র ব্যবহার করে সহজেই দেখানো যায় যে, সকল n -এর জন্য (n/3)n<n!, এবং সকল n ≥ 6 -এর জন্য n!<(n/2)n

স্টার্লিংয়ের আসন্ন মানের সাথে গৌণিকের প্রকৃত মানের তুলনা

n -এর বৃহৎ মানের জন্য n! -এর জন্য আরেকটু উত্তম হল স্টার্লিংয়ের আসন্নমান:

n!2πn(ne)n

এটি ও তার পরবর্তী আসন্নমানের মধ্যে n! অবস্থান করে:

2πn(ne)n<n!<2πn(ne)ne112n

শ্রীনিবাস রামানুজন টেমপ্লেট:Harv lnn! -এর আরেকটি আসন্নমান প্রদান করেন:[২২]

lnn!nlnnn+ln(n(1+4n(1+2n)))6+ln(π)2

অথবা

n!2πn(ne)n[1+1/(2n)+1/(8n2)]1/6

এটি এবং 2πn(ne)ne112n উভয়েরই আপেক্ষিক ত্রুটির পরিমাণ O(1/n3) পর্যায়ের (বড় O লিখনপদ্ধতি নিবন্ধটি দেখুন), তবে রামানুজনের মানটি আরও নির্ভুল (চারগুণ)। দুটি পদ ব্যবহার করা হলে (রামানুজনের আসন্নমানে যেমন) আপেক্ষিক ত্রুটি O(1/n5) পর্যায়ের হবে:

n!2πn(ne)nexp(112n1360n3)

তথ্যসূত্র

আরও দেখুন